Skip to main content
Log in

Integrated Antenna for Receiving Satellite Navigation Signals with a Built-In Inertial Measuring Unit

  • MEASUREMENTS IN INFORMATION TECHNOLOGIES
  • Published:
Measurement Techniques Aims and scope

The present article proposes an approach to ensuring the stable position of an active satellite navigation antenna relative to the inertial measuring unit when installing an inertial navigation system on a vehicle. The task of determining the coordinates of the navigation antenna relative to the inertial unit is accomplished by integrating the two elements into a single structure – an integrated antenna. When manufacturing an integrated antenna, the described approach allows the required coordinates to be determined under factory conditions. As well as explaining the operating principles of individual integrated antenna units, the article considers practical aspects of the integrated antenna’s use in inertial GNSS navigation systems. A specific consideration of the two-way digital information exchange between the antenna and computing device is presented. It is shown that the use of single-type cable modems provides the opportunity for a half-duplex exchange of information between the integrated antenna and the navigation receiver. Various uses of this information exchange to perform common navigation tasks are proposed. The independent measurement basis of the integrated antenna is noted. Approaches to acccounting for the orientation of this basis in the practical application of integrated antennas in single-antenna and multi-antenna inertial GNSS navigation systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. V. Veitsel’, V. A. Veitsel’, and D. V. Tatarnikov, High-Precision GNSS Positioning Apparatus: High-Precision Antennas. Special Methods for Positioning Accuracy Enhancement, M. I. Zhodzishskii (ed.), MAI-PRINT, Moscow (2010).

  2. G. I. Emel’yantsev, B. A. Blazhnov, E. V. Dranitsyna, and A. P. Stepanov, Girosk. Navig., 24, No. 1 (92). 36–48 (2016), https://doi.org/10.17285/0869-7035.2016.24.1.036-048.

  3. R. Zhang, F. Hoflinger, and L. M. Reind, IEEE Sens. J., 14, No. 6, 1778–1787 (2014), https://doi.org/10.1109/JSEN.2014.2303642.

  4. B. N. Stovner and T. A. Johansen, 18th Europ. Control Conf. (ECC), Naples, Italy, June 25–28, 2019, pp. 4040–4046, https://doi.org/10.23919/ECC.2019.8795760.

  5. J. W. Song and C. G. Park, IEEE Sens. J., 16, No. 9, 3171–3180 (2016), https://doi.org/10.1109/JSEN.2015.2510545.

    Article  ADS  Google Scholar 

  6. J. Seo, H. K. Hyung, J. G. Lee, and C. C. Park, Int. J. Control Autom. Syst., 4, No. 2, 247–254 (2006).

    Google Scholar 

  7. C. Liu, Z. Deng, W. Gao, and M. Fu, Proc. 30th Chin. Control Conf., Yantai, China, July 22–24, 2011, pp. 1476–1481.

  8. C. Geng, F. Wu, S. Xu, et al., 2018 IEEE/ION Position, Location and Navigation Symp., CA, USA, April 23–26, 2018, pp. 882–890, https://doi.org/10.1109/PLANS.2018.8373466.

  9. Z. Xiong, H. Peng, J. Liu, et al., 2014 IEEE/ION Position, Location and Navigation Symp., Monterey, CA, May 5–8, 2014, pp. 1213–1218, https://doi.org/10.1109/PLANS.2014.6851495.

  10. Z. Xiong, H. Peng, J. Wang, et al., IEEE Trans. Aerosp. Electron. Syst., 51, No. 4, 2760–2771 (2015), https://doi.org/10.1109/TAES.2015.140048.

    Article  ADS  Google Scholar 

  11. N. Montalbano and T. Humphreys, 2018 IEEE/ION Position, Location and Navigation Symp., Monterey, CA, USA, April 23–26, 2018, pp. 680–687, https://doi.org/10.1109/PLANS.2018.8373443.

  12. S. Hong, H. L. Man, H. H. Chun, et al., IEEE Trans. Vehic. Technol., 55, No. 2, 431–448 (2006), https://doi.org/10.1109/TVT.2005.863411.

    Article  Google Scholar 

  13. Y. Ma, J. Fang, and J. Li, Measurement, 48, No.1, 119–127 (2014), https://doi.org/10.1016/j.measurement.2013.10.020.

  14. A. Ramanandan, A. Chen, and J. A. Farrell, 2010 IEEE/ION Position, Location and Navigation Symp., Indian Wells, CA, May 4–6, 2010, pp. 1197–1203, https://doi.org/10.1109/PLANS.2010.5507279.

  15. N. Vasilyuk, M. Vorobiev, and D. Tokarev, 2018 IEEE/ION Position Location and Navigation Symp., Monterey, CA, USA, April 23–26, 2018, pp. 267–274, https://doi.org/10.1109/PLANS.2018.8373390.

  16. N. N. Vasilyuk, S. I. Tychinskiy, A. V. Doronin, et al., US Patent 10088576, subm. Oct. 2, 2018.

  17. A. Bilich and G. L. Mader, Proc. 23rd Int. Techn. Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2010), Portland, Oregon, USA, Sept. 21–24, 2010, pp. 1369–1377.

  18. Z. Pentek, T. Hiller, T. Liewald, et al., 2017 DGON Inertial Sensors and Systems Symp., Karlsruhe, Germany, Sept. 19–20, 2017, pp. 1–14, DOI: 0.1109/InertialSensors.2017.8171504.

  19. S. Hong, M. H. Lee, S. H. Kwon, and H. H. Chun, IEEE Trans. Intell. Transp. Syst., 5, No. 3, 208–218 (2004), https://doi.org/10.1109/TITS.2004.833771.

    Article  Google Scholar 

  20. M. V. Zharkov, K. K. Veremeenko, D. A. Antonov, and I. M. Kuznetsov, Girosk. Navig., 26, No. 3 (102), 54–68 (2018), https://doi.org/10.17285/0869-7035.2018.26.3.054-068.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Vasilyuk.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 3, pp. 16–23, March, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilyuk, N.N. Integrated Antenna for Receiving Satellite Navigation Signals with a Built-In Inertial Measuring Unit. Meas Tech 63, 191–198 (2020). https://doi.org/10.1007/s11018-020-01771-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-020-01771-7

Keywords

Navigation