Skip to main content
Log in

Adjustment of Phase Shift of Measurement Signals in an Optical Encoder from the Parameters of an Analyzing Scale

  • Published:
Measurement Techniques Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Optical sensors of linear displacements with diffraction gratings serving as the measurement scales are investigated. A method of stabilization of the phase difference of quadrature measurement signals, consisting in the use of an analyzing scale with a special structure, is proposed. A design of an optical encoder based on the method is proposed. Mathematical simulation of the phase shift of the measurement signals as a function of the parameters of the diffraction grating is performed, and the results of the simulation are presented. The RCWA method is used to simulate the passage of radiation through the optical system. The optimal parameters of the structure of the analyzing scale are calculated. Experimental investigations of a mock-up of the encoder are performed and results of measurements of the phase difference of the measurement signals are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others


  1. R. Munnig Schmidt, “Ultra-precision engineering in lithographic exposure equipment for the semiconductor industry,” Philo. Trans. Roy. Soc. A, 370, 3950–3972 (2012), DOI:

    Article  ADS  Google Scholar 

  2. T. Oiwa, M. Katsuki, M. Karita, et al., “Questionnaire survey on ultra-precision positioning,” Int. J. Automat. Technol., 5, No. 6, 766–772 (2011), DOI:

    Article  Google Scholar 

  3. W. Gao, S. W. Kim, H. Bosse, et al., “Measurement technologies for precision positioning,” CIRP Ann.: Manuf. Technol., 64, No. 2, 773–796 (2015), DOI:

    Article  Google Scholar 

  4. J. Rozman and A. Pleterek, “Linear optical encoder system with sinusoidal signal distortion below –60 db,” IEEE Trans. Instrum. Measur., 59, No. 6, DOI:

  5. G. Ye, H. Liu, Y. Shi, et al., “Optimizing design of an optical encoder based on generalized grating imaging,” Measur. Sci. Technol., 27, No. 11, 115005 (2016).

    Article  ADS  Google Scholar 

  6. X. Li, L. Yin, Y. Shi, et al., “Analysis of signal distortion caused by opening ratio variation of main scale and index scale in linear encoder,” Adv. Mater. Res., 712715, 1833–1837 (2013), DOI:–715.1833.

  7. A. Teimel, “Technology and applications of grating interferometers in high-precision measurement,” Prec. Eng., 14, No. 4 (1992), DOI:

  8. X. Li, Y. Shimizu, S. Ito, and W. Gao, “Fabrication of scale grating for surface encoders by using laser interference lithography with 405 nm laser diodes,” Int. J. Prec. Eng. Manuf., 14, No. 11, 1979–1988 (2013), DOI:

    Article  Google Scholar 

  9. S. Fan, Y. Shi, L. Yin, et al., “A study on the fabrication of main scale of linear encoder using continuous roller imprint method,” SPIE Proc., 8916, 3W (2013), DOI:

    Article  Google Scholar 

  10. Y. Glaser, “High-end spectroscopic diffraction gratings: design and manufacturing,” Adv. Opt. Technol., 4, No. 1, 25–46 (2015), DOI:

    Article  ADS  Google Scholar 

  11. M. V. Shishova, A. Y. Zherdev, S. B. Odinokov, and D. S. Lushnikov, “Lithographic diffraction grating with a period failure,” Opt. Micro- and Nanometrol.,VII: SPIE Conf. Proc., 10679, 106780E (2018), DOI: 10.1117/12.2306811.

  12. A. Y. Zherdev, S. B. Odinokov, D. S. Lushnikov, et al., “Halography: Advances and modern trends V,” SPIE Conf. Proc., 10233, 1023311 (2017), DOI 10:1117/12.2264801.

  13. D. S. Lushnikov, A. Y. Zherdev, S. B. Odinokov, et al., “The small-sized ultraprecision sensor for measuring linear displacements,” Opt. Measur. Syst. for Industr. Inspect. X: SPIE Conf. Proc., 10329, 103293E (2017), DOI:

    Article  Google Scholar 

  14. A. Y. Zherdev, S. B. Odinokov, M. S. Kovalev, et al., “Optical position encoder based on four-section diffraction grating,” Opt. Sens. Detect. V: SPIE Conf. Proc., 10680, 106802K (2018), DOI:

    Article  Google Scholar 

  15. M. V. Shishova, S. B. Odinokov, D. S. Lushnikov, et al., “Mathematical modeling of signal transfer processes into linear displacement encoder optical system,” Procedia Eng., 201, 623–629 (2017), DOI:

    Article  Google Scholar 

  16. G. Ye, S. Fan, H. Liu, et al., “Design of a precise and robust linearized converter for optical encoders using a ratiometric technique,” Measur. Sci. Technol., 25, No. 12, p. 125003 (2014), DOI:

    Article  ADS  Google Scholar 

  17. J. Chandezon, D. Maystre, and G. Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Optics, 11, 235–241 (1980).

    Article  ADS  Google Scholar 

  18. M. G. Moharam and G. T. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Amer., 72, 1385 (1982), DOI:

    Article  ADS  Google Scholar 

  19. A. Y. Zherdev, S. B. Odinokov, D. S. Lushnikov, et al., “Plasmonic spectral filters based on diffraction gratings,” Holography: Adv. and Modern Trends IV: SPIE Conf. Proc., 9508, 950805 (2015), DOI:

    Article  Google Scholar 

  20. M. V. Shishova, S. B. Odinokov, D. S. Lushnikov, and A. Y. Zherdev, “Methods for analyzing quality of diffraction gratings for linear-displacement sensors,” J. Opt. Technol.85, No. 7, 396–400 (2018), DOI:

    Article  Google Scholar 

  21. V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, et al., “Magnetooptical effects in the metal-dielectric gratings,” Opt. Communs., 278, 104–109 (2007), DOI:

    Article  ADS  Google Scholar 

  22. E. A. Bezus and L. L. Doskolovich, “Stable algorithm for the computation of the electromagnetic field distribution of eigenmodes of periodic diffraction structures,” J. Opt. Soc. Amer., 29, 2307–2313 (2012), DOI:

    Article  ADS  Google Scholar 

  23. D. A. Bykov and L. L. Doskolovich, “Numerical methods for calculating poles of the scattering matrix with applications in grating theory,” J. Lightwave Technol., 31, 793–801 (2013).

    Article  ADS  Google Scholar 

  24. D. A. Bykov, E. A. Bezus, and L. L. Doskolovich, “Use of aperiodic Fourier modal method for calculating complexfrequency eigenmodes of long-period photonic crystal slabs,” Opt. Express, 25, 27298–27309 (2017), DOI:

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. Yu. Zherdev.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 6, pp. 31–36, June, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zherdev, A.Y., Kovalev, M.S., Shishova, M.V. et al. Adjustment of Phase Shift of Measurement Signals in an Optical Encoder from the Parameters of an Analyzing Scale. Meas Tech 62, 511–518 (2019).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: