Skip to main content

Advertisement

Log in

A Method of Calculating Critical Wind Speeds in Determining the Boundaries of the Region of Wire Galloping of a Split-Phase Multi-Span Transmission Line

  • LINEAR AND ANGULAR MEASUREMENTS
  • Published:
Measurement Techniques Aims and scope

The aeroelastic instability of an ice-covered wire of overhead power transmission lines was investigated. An engineering method for calculating critical wind velocities is proposed. This method makes it possible to define the boundaries of the region of wire galloping of the split phase of a multi-span transmission line. The results that were contained can be used when developing measures to protect overhead power transmission lines from wire galloping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. J. P. Den-Hartog, “Transmission line’s vibrations due to sleet,” Tr. AIEE, 51, 1074–1076 (1932).

    Google Scholar 

  2. V. I. Van’ko and I. K. Marchevskii, “PTL wire galloping – instability according to Lyapunov,” Izv. VUZ Energet. Ob’ed. SNG. Energetika, Iss. 6, 14–23 (2014).

  3. L. D. Pustyl’nikov and V. A. Shkaptsov, “Aerodynamically unstable oscillations of overhead power transmission lines with ice deposits,” Izv. AN SSSR. Energet. Transp., No. 2, 103–109 (1991).

  4. I. P. Sukhanov, “The question of the dynamic instability of ice-covered wires,” in High-Altitude Transmission Lines: Abstr. All-Union Sci.-Techn. Meeting, Moscow (1986).

  5. A. I. Polevoi, “Triggering event for wire galloping under the action of wind and ice,” Izv. AN SSSR. Energet. Transp., No. 6, 49–58 (1987).

  6. V. Ya. Gorin, N. N. Davidson, and E. A. Marasina, “Methodology of determining critical wind velocity with wire galloping of overhead PTLs,” Nauk. Pratsi DonNTU. Ser. Elektrotekh. Energet., No. 7 (128), 52–57 (2009).

  7. F. N. Shklyarchuk and A. N. Danilin, “Nonlinear oscillations and wire galloping with icing,” Izv. TulGU Tekhn. Nauki., Iss. 11, Energet. Elektrosnab. Elektroprivod, 188–197 (2013).

  8. V. A. Fel’dshtein, S. V. Kolosov, and S. V. Ryzhov, A Model of the Dance of Wires of OLHs and Calculation of Pro- tection Facilities, IATs Energiya, Moscow (2010), pp. 145–156.

    Google Scholar 

  9. E. S. Glebov, Wire Galloping on 500 kV Overhead Power Transmission Lines, BTI ORGRES, Moscow (1965).

    Google Scholar 

  10. O. Nigoland and G. J. Clarke, “Conductor galloping and control based on torsional mechanism,” IEEE, 74 016-2 (1974).

    Google Scholar 

  11. A. Luongo and G. Piccardo, “Linear instability mechanisms for coupled translational galloping,” J. Sound Vib., 288, No. 4–5, 1027–1047 (2005).

    Article  ADS  Google Scholar 

  12. M. B. Waris, T. Ishihara, and M. W. Sarwar, “Galloping response prediction of ice-accreted transmission lines,” Proc. 4th Int. Conf. Advances in Wind and Structures (AWAS’08), Jeju, Korea, May 29–31, 2008, pp. 876–885.

  13. Mingzhe Hen and J. H. G. Macdonald, “An analytical solution for the galloping stability of a 3 degree-of-freedom system based on quasi-steady theory,” J. Fluid Struct., 60, 23–36 (2016).

  14. N. Nikitasa and J. H. G. Macdonald, “Misconceptions and generalizations of the Den-Hartog galloping criterion,” J. Eng. Mech., 140, No. 4, 04013005 (2014).

    Article  Google Scholar 

  15. H. Riaz, S. K. Biswas, and N. U. Ahmed, “Stochastic model jag and stabilization of galloping transmission lines,” Electr. Pow. Syst. Res., 10, 137–143 (1986).

    Article  Google Scholar 

  16. W. Y. Ma, Q. K. Liu, X. Q. Du, and Y. Y. Wei, “Effect of the Reynolds number on the aerodynamic forces and gal- loping instability of a cylinder with semi-elliptical cross sections,” J. Wind Eng. Ind. Aerod., 146, 71–80 (2015).

    Article  Google Scholar 

  17. K. F. Jones, “Coupled vertical and horizontal galloping,” J. Eng. Mech. ASCE, 118, No. 1, 92–107 (1992).

    Article  Google Scholar 

  18. A. Petre, “Fluttering of the ‘electrical line galloping’ type for wires of continuous mass,” Bulet. Inst. Politeh. Ghe- orghe Gheorghiu-Dej, București, XXIX, No. 3, 103–107 (1967).

    Google Scholar 

  19. M. A. Dzhamanbaev, N. P. Tokenov, and B. A. Imangaliev, “Determinations of the critical wind velocity current during galloping of the split phase of overhead lines,” Vestn. KazNTU, No. 3, 254–262 (2015).

  20. S. S. Rzhevskii and E. A. Khvoles, “Wire galloping on the 500 kV Bugulma–Beketov OHLs,” Nauch. Trudy NII Energoset’proekt, Iss. 9, 197–202 (1977).

  21. E. N. Lovetskaya, D. S. Savvaitov, and V. A. Shkaptsov, “Analysis of cases of wire galloping of 10–750 kV OHLs,” Elektr. Stants., No. 2 (1987).

  22. A. B. Bekbaev, M. A. Dzhamanbaev, R. Abitaeva, et al., “Estimate of maximum expected intensity of one-half-wave line galloping. International science index,” Int. Scholarly and Sci. Research & Innovation, waset.org, Dubai, UAE, No. 17 (11), 1745–1747 (2015).

  23. M. A. Dzhamanbaev and R. Sh. Abitaeva, “A mathematical model of the galloping of a split phase (multi-span system),” Nauka, No. 4–2, 318–323 (2016).

  24. M. A. Dzhamanbaev, R. Sh. Abitaeva, and A. Kasimov, “Aerodynamic characteristics of a profile of the profile of the cross-section of a wire with an ice deposit,” Scientific Heritage of Shakhmardan Esenov: Proc. Int. Satpaev Readings, KazNITU Satpaeva, Almaty (2017), pp. 817–820.

  25. D. I. Ageikin and M. A. Balashov (eds.), Reference Manual for Designing Automation Elements and Systems, Oboron. Prom., Moscow (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Chakeeva.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 6, pp. 25–30, June, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzhamanbaev, M.A., Chakeeva, K.S., Karataeva, Z.E. et al. A Method of Calculating Critical Wind Speeds in Determining the Boundaries of the Region of Wire Galloping of a Split-Phase Multi-Span Transmission Line. Meas Tech 62, 503–510 (2019). https://doi.org/10.1007/s11018-019-01653-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-019-01653-7

Keywords

Navigation