Measurement Techniques

, Volume 60, Issue 12, pp 1178–1192 | Cite as

Towards a 229Th-Based Nuclear Clock

  • L. von der WenseEmail author
  • B. Seiferle
  • P. G. Thirolf

An overview of the current status of the development of a nuclear clock based on the state of lowest known nuclear excitation energy in 229Th is presented. The text is especially written for the interested reader without any particular knowledge in this field of research. It is thus ideal as an introductory reading to get a broad overview of the various different aspects of the field; in addition, it can serve as a guideline for future research. An introductory part is provided, giving a historic context and explaining the fundamental concept of clocks. Finally, potential candidates for nuclear clocks other than 229Th are discussed.



This work was supported by the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 664732 “nuClock,” by DFG grant Th956/3-1, and by the LMU department of Medical Physics via the Maier-Leibnitz Laboratory. L.v.d.Wense would like to thank the organizers of the conference within the frame of the jubilee celebrating “175 years of the Mendeleev All-Russia Research Institute of Metrology (VNIIM) and National Measurement System” in St. Petersburg for the invitation.


  1. 1.
    K. Higgins, D. Miner, C. N. Smith, and D. B. Sullivan, A Walk Through Time (version 1.2.1) (2004), National Institute of Standards and Technology, Gaithersburg, MD,, acc. July 12, 2010.
  2. 2.
    M. Bennet et al., “Huygens’ clocks,” Proc. Royal Soc. London A, 458, 563–579 (2002).MathSciNetCrossRefGoogle Scholar
  3. 3.
    F. Sorge, M. Cammalleri, and G. Genchi, “On the birth and growth of pendulum clocks in the early modern era,” in: Essays on the History of Mechanical Engineering, Springer (2016), pp. 273–290.Google Scholar
  4. 4.
    R. T. Gould, The Marine Chronometer: Its History and Development, J. D. Potter (1923).Google Scholar
  5. 5.
    J. E. Bosschieter, Shortt’s Free Pendulum. A History of the Evolution of Electric Clocks,, acc. Sept. 3, 2017.
  6. 6.
    W. A. Marrison, “The evolution of the quartz crystal clock,” Bell Syst. Techn. J., 27, 510–588 (1948).CrossRefGoogle Scholar
  7. 7.
    H. Lyons, “The atomic clock,” Instruments, 22, 133–135 (1949).Google Scholar
  8. 8.
    P. Forman, Atomichron: The Atomic Clock from Concept to Commercial Product, IEEE Ultrasonics, Ferroelectrics and Frequency Control Society (1998).Google Scholar
  9. 9.
    L. Essen and J. V. L. Parry, “An atomic standard of frequency and time interval: A cesium resonator,” Nature, 176, 280–282 (1955).ADSCrossRefGoogle Scholar
  10. 10.
    N. F. Ramsey, “History of atomic clocks,” J. Res. Nat. Bur. Stand., 88, 301–318 (1983).CrossRefGoogle Scholar
  11. 11.
    R. Wynands and S. Weyers, “Atomic fountain clocks,” Metrologica, 42, 64–79 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature, 416, 233–237 (2002).ADSCrossRefGoogle Scholar
  13. 13.
    S. A. Diddams et al., “An optical clock based on a single trapped 199Hg+ ion,” Science, 293, 825–828 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    T. Rosenband et al., “Frequency ratio of Al+ and Hg+ single-ion optical clocks; Metrology at the 17th decimal place,” Science, 319, 1808–1811 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    N. Huntemann et al., “Single-ion atomic clock with 3·10–18 systematic uncertainty,” Phys. Rev. Lett., 116, 063001 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    B. J. Bloom et al., “An optical lattice clock with accuracy and stability at the 10–18 level,” Nature, 506, 71–75 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    T. L. Nicholson et al., “Systematic evaluation of an atomic clock at 2·10–18 total uncertainty,” Nature, Communications (2015).Google Scholar
  18. 18.
    A. D. Ludlow et al., “Optical atomic clocks,” Rev. Mod. Phys., 87, 637–699 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    E. Peik and M. Okhapkin, “Nuclear clocks based on resonant excitation of γ-transitions,” Comptes Rendus Phys., 16, 516–523 (2015).CrossRefGoogle Scholar
  20. 20.
    L. A. Kroger and C. W. Reich, “Features of the low energy level scheme of 229Th as observed in the decay of 233U,” Nucl. Phys. A, 259, 29 (1976).ADSCrossRefGoogle Scholar
  21. 21.
    C. W. Reich and R. Helmer, “Energy separation of the doublet of intrinsic states at the ground state of 229Th,” Phys. Rev. Lett., 64, 271 (1990).ADSCrossRefGoogle Scholar
  22. 22.
    R. Helmer and C. W. Reich, “An excited state of 229Th at 3.5 eV,” Phys. Rev. C, 49, 1845 (1994).ADSCrossRefGoogle Scholar
  23. 23.
    B. R. Beck et al., “Energy splitting of the ground-state doublet in the nucleus 229Th,” Phys. Rev. Lett., 109, 142501 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    B. R. Beck et al., “Improved value for the energy splitting of the ground-state doublet in the nucleus 229mTh,” LLNLPROC-415170 (2009).Google Scholar
  25. 25.
    F. F. Karpeshin and M. B. Trzhaskovskaya, “Impact of the electron environment on the lifetime of the 229Thm low-lying isomer,” Phys. Rev. C, 76, 054313 (2007).ADSCrossRefGoogle Scholar
  26. 26.
    L. von der Wense, On the Direct Detection of 229m Th: PhD Thesis, Ludwig-Maximilians-Universität München, Germany (2016), Lars von der.pdf.
  27. 27.
    O. V. Vorykhalov and V. V. Koltsov, “Search for an isomeric transition of energy below 5 eV in 229Th nucleus,” Bull. Russ. Acad. Sci.: Physics, 59, 20–24 (1995).Google Scholar
  28. 28.
    V. F. Strizhov and E. V. Tkalya, “Decay channel of low-lying isomer state of the 229Th nucleus. Possibilities of experimental investigation,” Sov. Phys. JETP, 72, 387 (1991).Google Scholar
  29. 29.
    E. V. Tkalya, V. O. Varlamov, V. V. Lomonosov, and S. A. Nikulin, “Processes of the nuclear isomer 229mTh (3/2+, 3.5 ± 1.0 eV) resonant excitation by optical photons,” Phys. Scripta, 53, 296–299 (1996).ADSCrossRefGoogle Scholar
  30. 30.
    E. V. Tkalya, A. N. Zherikin, and V. I. Zhudov, “Decay of the low-energy nuclear isomer 229Thm (3/2+, 3.5 ± 1.0 eV) in solids (dielectrics and metals): a new scheme of experimental research,” Phys. Rev. C, 61, 064308 (2000).ADSCrossRefGoogle Scholar
  31. 31.
    E. Peik and C. Tamm, “Nuclear laser spectroscopy of the 3.5 eV transition in 229Th,” Euro-Phys. Lett., 61, 181–186 (2003).ADSCrossRefGoogle Scholar
  32. 32.
    N. Minkov and A. Pállfy, “Reduced transition probabilities for the gamma decay of the 7.8 eV isomer in 229Th,” Phys. Rev. Lett., 118, 212501 (2017).ADSCrossRefGoogle Scholar
  33. 33.
    E. V. Tkalya, C. Schneider, J. Jeet, and E. R. Hudson, “Radiative lifetime and energy of the low-energy isomeric level in 229Th,” Phys. Rev. C, 92, 054324 (2015).ADSCrossRefGoogle Scholar
  34. 34.
    C. J. Campbell, A. G. Radnaev, A. Kuzmich, et al., “Single-ion nuclear clock for metrology at the 19th decimal place,” Phys. Rev. Lett., 108, 120802 (2012).ADSCrossRefGoogle Scholar
  35. 35.
    C. J. Campbell, A. G. Radnaev, and A. Kuzmich, “Wigner crystals of 229Th for optical excitation of the nuclear isomer,” Phys. Rev. Lett., 106, 223001 (2011).ADSCrossRefGoogle Scholar
  36. 36.
    K. Zimmermann, Experiments Towards Optical Nuclear Spectroscopy with Thorium-229: PhD Thesis, University of Hannover, Germany (2010).Google Scholar
  37. 37.
    P. V. Borisyuk et al., “Trapping, retention and laser cooling of Th3+ ions in a multisection linear quadrupole trap,” Quant. Electr., 47, 406–411 (2017).ADSCrossRefGoogle Scholar
  38. 38.
    W. G. Rellergert et al., “Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus,” Phys. Rev. Lett., 104, 200802 (2010).ADSCrossRefGoogle Scholar
  39. 39.
    G. A. Kazakov et al., “Performance of a 229Thorium solid-state nuclear clock,” New J. Phys., 14, 083019 (2012).ADSCrossRefGoogle Scholar
  40. 40.
    E. Swanberg, Searching for the Decay of 229m Th: PhD Thesis, University of California, Berkeley (2012).Google Scholar
  41. 41.
    X. Zhao et al., “Observation of the deexcitation of the 229mTh nuclear isomer,” Phys. Rev. Lett.,109, 160801 (2012).Google Scholar
  42. 42.
    E. Peik and K. Zimmermann, “Comment on ‘Observation of the deexcitation of the 229mTh nuclear isomer’,” Phys. Rev. Lett., 111, 018901 (2013).ADSCrossRefGoogle Scholar
  43. 43.
    L. von der Wense et al., “Towards a direct transition energy measurement of the lowest nuclear excitation in 229Th,” JINST, 8, P03005 (2013).CrossRefGoogle Scholar
  44. 44.
    M. P. Hehlen et al., “Optical spectroscopy of an atomic nucleus: Progress toward direct observation of the 229Th isomer transition,” J. Lumin., 133, 91–95 (2013).CrossRefGoogle Scholar
  45. 45.
    S. Stellmer et al., “Feasibility study of measuring the 229Th nuclear isomer transition with 233U-doped crystals,” Phys. Rev. C, 94, 014302 (2016).ADSCrossRefGoogle Scholar
  46. 46.
    P. van Duppen et al., Characterization of the Low-Energy 229m Th Isomer: Letter of Intent to the ISOLDE and Neutron Time-of-Flight Committee (2017),
  47. 47.
    S. G. Porsev, V. V. Flambaum, E. Peik, and Chr. Tamm, “Excitation of the isomeric 229mTh nuclear state via an electronic bridge process in 229Th1+,” Phys. Rev. Lett., 105, 182501 (2010).Google Scholar
  48. 48.
    O. A. Herrera-Sancho, Laser Excitation of 8-eV Electronic States in Th + : A First Pillar of the Electronic Bridge Toward Excitation of the Th-229 Nucleus: PhD Thesis, Univ. Hannover, Germany (2012).Google Scholar
  49. 49.
    C. J. Campbell et al., “Multiply charged thorium crystals for nuclear laser spectroscopy,” Phys. Rev. Lett., 102, 233004 (2009).ADSCrossRefGoogle Scholar
  50. 50.
    J. Jeet et al., “Results of a direct search using synchrotron radiation for the low-energy 229Th nuclear isomeric transition,” Phys. Rev. Lett., 114, 253001 (2015).ADSCrossRefGoogle Scholar
  51. 51.
    S. Stellmer, M. Schreitl, and T. Schumm, “Radioluminescence and photoluminescence of Th:CaF2 crystals,” Sci. Reports, 5, 15580 (2015).ADSCrossRefGoogle Scholar
  52. 52.
    A. Yamaguchi et al., “Experimental search for the low-energy nuclear transition in 229Th with undulator radiation,” New J. Phys., 17, 053053 (2015).ADSCrossRefGoogle Scholar
  53. 53.
    S. Stellmer et al., “Towards measurements of the nuclear clock transition in 229Th,” J. Phys.: Conf. Ser., 723, 012059 (2016).Google Scholar
  54. 54.
    Yu. P. Gangrsky et al., “Search for light radiation in decay of 229Th isomer with anomalously low excitation energy,” Bull. Rus. Acad. Sci. Phys., 69, 1857 (2005).Google Scholar
  55. 55.
    L. von der Wense et al., “Direct detection of the 229Th nuclear clock transition,” Nature, 533, 47–51 (2016).ADSCrossRefGoogle Scholar
  56. 56.
    B. Seiferle, L. von der Wense, and P. G. Thirolf, “Lifetime measurement of the 229Th nuclear isomer,” Phys. Rev. Lett., 118, 042501 (2017).ADSCrossRefGoogle Scholar
  57. 57.
    B. Seiferle, L. von der Wense, and P.G. Thirolf, “Feasibility study of internal conversion electron spectroscopy of 229mTh,” Eur. Phys. J. A, 53, 108 (2017).ADSCrossRefGoogle Scholar
  58. 58.
    F. Ponce, High Accuracy Measurement of the Nuclear Decay of U-235m and Search for the Nuclear Decay of Th-229m: PhD Thesis, University of California, USA (2017).Google Scholar
  59. 59.
    V. O. Varlamov et al., “Excitation of a 229mTh ((3/2)+, 3.5 eV) isomer by surface plasmons,” Phys. Dokl., 41, 47 (1996).ADSMathSciNetGoogle Scholar
  60. 60.
    L. von der Wense et al., “Laser excitation scheme for 229mTh,” Phys. Rev. Lett., accepted for publication.Google Scholar
  61. 61.
    G. A. Kazakov et al., “Prospects for measuring the 229Th isomer energy using a metallic magnetic microcalorimeter,” Nucl. Instrum. Meth. A, 735, 229–239 (2014).ADSCrossRefGoogle Scholar
  62. 62.
    P. Schneider, Spektroskopische Messungen an Thorium-229 mit einem Detektor-Array aus metallischen magnetischen Kalorimetern: Master Thesis, Ruprecht-Karls-Universität Heidelberg, Germany (2016).Google Scholar
  63. 63.
    A. Pálffy et al., “Isomer triggering via nuclear excitation by electron capture,” Phys. Rev. Lett., 99, 172502 (2007).ADSCrossRefGoogle Scholar
  64. 64.
    C. Brandau et al., “Probing nuclear properties by resonant atomic collisions between electrons and ions,” Phys. Scr., T156, 014050 (2013).ADSCrossRefGoogle Scholar
  65. 65.
    X. Ma et al., “Proposal for precision determination of 7.8 eV isomeric state in 229Th at heavy ion storage ring,” Phys. Scr., T166, 014012 (2015).ADSCrossRefGoogle Scholar
  66. 66.
    W. T. Liao and A. Pálffy, “Optomechanically induced transparency of x-rays via optical control,” Sci. Reports, 7, 321 (2017).ADSCrossRefGoogle Scholar
  67. 67.
    K. Beloy, “Hyperfine structure in 229gTh3+ as a probe of the 229gTh → 229mTh nuclear excitation energy,” Phys. Rev. Lett., 112, 062503 (2014).ADSCrossRefGoogle Scholar
  68. 68.
    V. Sonnenschein et al., “The search for the existence of 229mTh at IGISOL,” Eur. Phys. J. A, 48, 52 (2012).ADSCrossRefGoogle Scholar
  69. 69.
    M. Safronova, “Elusive tranition spotted in thorium,” Nature, 533, 44–45 (2016).ADSCrossRefGoogle Scholar
  70. 70.
    V. V. Flambaum, “Enhanced effect of temporal variation of the ne structure constant and the strong interaction in 229Th,” Phys. Rev. Lett., 97, 092502 (2006).ADSCrossRefGoogle Scholar
  71. 71.
    A. Cingöz et al., “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature, 482, 68–71 (2012).ADSCrossRefGoogle Scholar
  72. 72.
    S. M. Cavaletto et al., “Broadband high-resolution x-ray frequency combs,” Nature Photonics, 8, 520–523 (2014).ADSCrossRefGoogle Scholar
  73. 73.
    NNDC Interactive Chart of Nuclides, Brookhaven National Laboratory, Brookhaven,, acc. Sept. 3, 2017.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • L. von der Wense
    • 1
    Email author
  • B. Seiferle
    • 1
  • P. G. Thirolf
    • 1
  1. 1.Ludwig-Maximilian UniversityMunichGermany

Personalised recommendations