Skip to main content

Advertisement

Log in

A Diamond Detector for Registration of Ionizing Radiation with Low Linear Energy Transfer

  • IONIZING RADIATION MEASUREMENTS
  • Published:
Measurement Techniques Aims and scope

A radiation-resistant diamond-based detector for registration of fluxes of particles of cosmic radiation with low linear energy transfer is developed and investigated. The device may be used to register gamma radiation of water-moderated, water-cooled nuclear energy reactors. The characteristics of a detector when exposed to beta radiation are determined and modeling of the signals of the device when exposed to beta and gamma radiation is performed. The use of a multi-layer diamond structure makes it possible to increase the signal-to-noise ratio and expand the dynamic range of measurements of the linear energy transfer of cosmic radiation particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. V. V. Kadilin, V. A. Kolyubin, S. A. L’vov, et al., “Outlook for the use of diamond detectors for registering particles of space origin,” Yad. Fiz. Inzhin., 5, No. 2, 138–144 (2014).

    Google Scholar 

  2. K. V. Zakharchenko, A. F. Kaperko, V. A. Kolyubin, et al., “Spectrometric diamond detector of fl uxes of ionizing radation for space-based transportation systems,” Izmer. Tekhn., No. 6, 63–66 (2015).

  3. L. N. Davydov, A. V. Rybka, A. A. Vierovkin, et al., “Registration of high-intensity electron and x-ray fields with polycrystalline CVD diamond detectors,” Proc. SPIE, 8507, No. 12, 85071 (2012).

    Article  Google Scholar 

  4. I. Wodniak, K. Drozdowicz, J. Dankowski, et al., “CVD diamond detectors for fast alpha particles escaping from the tokamak D-T plasma,” NUKLEONIKA, 56, 143–147 (2011).

    Google Scholar 

  5. Yu. A. Plastinin and I. Yu. Skryabyshev, “Electrostatic phenomena near low-orbiting space vehicles,” Izmer. Tekhn., No. 3, 52–57 (2014).

  6. G. Conte, P. Allegrini, M. Pacilli, et al., “Three-dimensional graphite electrodes in CVD single crystal diamond detectors: charge collection dependence on impinging beta-particles geometry,” Nucl. Inst. Meth. Phys. Res. A, 799, 10–16 (2015).

    Article  ADS  Google Scholar 

  7. 7. I. Toshichi and S. Hidenori, Patent 2011191255 JP (A), “Radiation detector,” Univ. Osaka, Hitachi Aloka Medical LTD (2011).

  8. 8. L.Wang, Y. Yang, J. Zho, et al., Patent 103746036 CN (A), “Preparation method for ohmic contact electrode of diamond radiation detector,” Univ. Shanghai (2014).

  9. V. N. Amosov, A. I. Yemel’yanov, N. I. Kris’ko, and N. B. Rodionov, Patent 2522772 RF, “A diamond detector,” Izobret. Polezn. Modeli., No. 20 (2014).

  10. F. Burkart, J. Blanco, J. Borburgh, et al., “Diamond particle detector properties during high fl uence material damage tests and their future applications for machine protection in the LHC,” in: Geneva and CIVIDEC Instrumentation, Wien. Proc. IPAC 2013, Shanghai, China (2013).

  11. C. Weiss, E. Griesmayer, and C. Guerrero, “A new CVD diamond mosaic-detector for (n, a) cross-section measurements at the n_TOF experiment at CERN,” Nucl. Inst. Meth. Phys. Res. A, 732, 190–194 (2013).

    Article  ADS  Google Scholar 

  12. H. Jansen, P. Alvarez Sanchez, S. Bart Pedersen, et al., “Verification of the CNGS timing system using fast diamond detectors,” J. Inst., 8, 01017 (2013).

    Google Scholar 

  13. C. Weiss, E. Griesmayer, and C. Guerrero, “Response of CVD diamond detectors to 14 MeV neutrons,” CERN-ATSNote-2012-093 TECH, 2012-11-16 (2012).

  14. 14. A. B. Horstall and J. A. Silvie, Patent 20110233418 US, “A radiation detector,” Bae Systems plc, London, GB (2011).

  15. L. A. Matalin, S. I. Chubarov, L. A. Timokhin, et al., Electronic Methods of Nuclear Physics, Atomizdat, Moscow (1973).

    Google Scholar 

  16. S. F. Kozlov, Diamond Detectors of Nuclear Radiation. Diamonds in Electronic Engineering, Energoatomizdat, Moscow (1990).

    Google Scholar 

  17. V. I. Popov, Linear Energy Transfer MethodsSpectrometry of Ionizing Radiation, Atomizdat, Moscow (1978).

    Google Scholar 

  18. NIST: Stopping-Power and Range Tables for Electrons, http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html, acces. May 16, 2016.

  19. N. J. Carron, An Introduction to the Passage of Energetic Particles Through Matter, CRC Press, Taylor & Francis Group (2007).

    Google Scholar 

  20. Geant4: A Toolkit for the Simulation of the Passage of Particles Through Matter, http://geant4.web.cem.ch/geant4/, acces. March 15, 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Kaperko.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 1, pp. 52–56, January, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gladchenkov, E.V., Zakharchenko, K.V., Kaperko, A.F. et al. A Diamond Detector for Registration of Ionizing Radiation with Low Linear Energy Transfer. Meas Tech 60, 75–81 (2017). https://doi.org/10.1007/s11018-017-1152-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-017-1152-0

Keywords

Navigation