Skip to main content
Log in

Determination of the Rate of Fall of Rain Drops in Measurements of Their Parameters by an Optical Rain Gauge

  • Published:
Measurement Techniques Aims and scope

Methods of determining the rate of fall of rain drops are reviewed. A description of an optical rain gauge whose principle of operation is based on the acquisition and analysis of shadowgraphs of particles of precipitation is presented. The error in the determination of the rate of fall of rain drops is estimated and the results of preliminary field measurements of the parameters of drops are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. I. V. Litvinov, Structure of Atmospheric Precipitation, Gidrometeoizdat, Leningrad (1974).

  2. A. B. Shupyatskii, “Form and rate of fall of water and rain drops,” Izv. Akad. Nauk SSSR, No. 5, 798–800 (1959).

  3. R. Gunn and G. D. Kinzer, “The terminal rate of fall for water drops in stagnant air,” J. Atmos. Oceanic Technol., 6, 243–248 (1949).

    Google Scholar 

  4. A. A. Titov, “Heterodyne meter of the rate of fall and direction of fall of rain drops,” Izmer. Tekhn., No. 11, 43–45 (2008).

  5. A. Kruger and W. F. Krajewski, “Two-dimensional video disdrometer: A description,” J. Atmos. Oceanic Technol., 19, 602–617 (2002).

    Article  ADS  Google Scholar 

  6. E. Barthazy, E. Barthazy, S. Goke, et al., “An optical array instrument for shape and fall rate of fall measurements of hydrometeors,” J. Atmos. Oceanic Technol., 21, 1400–1416 (2004).

    Article  ADS  Google Scholar 

  7. V. V. Kal’chikhin, A. A. Kobzev, V. A. Korol’kov, and A. A. Tikhomirov, “Opto-electronic two-channel precipitation gauge,” Optika Atmosf. i Okeana, 24, No. 11, 990–996 (2011).

    Google Scholar 

  8. D. Hauser, P. Amayenc, B. Nutten, and P. A. Waldteufel, “A new optical instrument for simultaneous measurement of raindrop diameter and fall speed distributions,” J. Atmos. Oceanic Technol., 1, 256–269 (1984).

    Article  ADS  Google Scholar 

  9. M. Loffer-Mang and J. Joss, “An optical disdrometer for measuring size and rate of fall of hydrometeors,” J. Atmos. Oceanic Technol., 17, 130–139 (2000).

    Article  ADS  Google Scholar 

  10. A. S. Glushchenko, A Study of the Optical Properties of Rain Drops and the Development of the Measuring Instruments for Remote Determination of the Microstructure of Precipitation: Auth. Abstr. Dissert. Cand. Techn. Sci., Moscow (2005).

  11. E. Kessler, “On the distribution and continuity of water substance in atmospheric circulation,” Meteor. Monograf., 10, No. 32, 1–84 (1969).

    Google Scholar 

  12. V. N. Kiselev and A. D. Kuznetsov, Methods for Sounding of the Environment (atmosphere), RGGMU, St. Petersburg (2004).

  13. H. B. Wobus, F. W. Murray, and L. R. Koenig, “Calculation of the terminal rate of fall of water drops,” J. Appl. Meteor., 10, No. 4, 751–754 (1971).

    Article  ADS  Google Scholar 

  14. D. Atlas, R.C. Srivastava, and R. S. Sekhon, “Doppler characteristics of precipitation at vertical incidence,” Rev. Geophys. Space Phys., No. 11, 1–35 (1973).

  15. A. M. Abd Elbasit, H. Yasuda, and A. Salmi, “Application of piezoelectric transducers in simulated rainfall erosivity assessment,” Hydrol. Sci. J., 56, No. 1, 187–194 (2011).

    Article  Google Scholar 

  16. V. V. Kal’chikhin, A. A. Kobzev, V. A. Korol’kov, and A. A. Tikhomirov, “Determination of the microstructural characteristics of liquid atmospheric precipitation by an optical rain gauge,” Optika Atmosf. i Okeana, 28, No. 7, 669–672 (2015).

    Google Scholar 

  17. K. V. Beard, “Terminal rate of fall and shape of cloud and precipitation drops aloft,” J. Atmos. Sci., 33, 851–864 (1976).

    Article  ADS  Google Scholar 

  18. V. V. Kal’chikhin, A.A. Kobzev, V. A. Korol’kov, and A. A. Tikhomirov, “Selection of dimension of measurement space of two-channel optical rain gauge,” Optika Atmosf. i Okeana, 26, No. 2, 155–159 (2013).

    Google Scholar 

Download references

The present study was carried out with the support of the Ministry of Education and Science of the Russian Federation (Agreement No. 14.607.21.0030 of June 5, 2014; unique project identifier is RFMEFI160714X0030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kobzev.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 11, pp. 29–32, November, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kal’chikhin, V.V., Kobzev, A.A., Korol’kov, V.A. et al. Determination of the Rate of Fall of Rain Drops in Measurements of Their Parameters by an Optical Rain Gauge. Meas Tech 59, 1175–1180 (2017). https://doi.org/10.1007/s11018-017-1111-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-017-1111-9

Keywords

Navigation