Advertisement

Measurement Techniques

, Volume 59, Issue 8, pp 803–809 | Cite as

On the Choice of Fixed Fundamental Constants for New Definitions of the SI Units

  • K. A. Bronnikov
  • V. D. Ivashchuk
  • M. I. Kalinin
  • V. N. Mel’nikov
  • V. V. Khruschov
Article
  • 96 Downloads

Different ways of choosing the fundamental physical constants in connection with the planned transition to new definitions of the fundamental SI units (kilogram, mole, ampere, and kelvin) are discussed. Criteria for an optimum choice of the fundamental physical constants for this transition are considered. The advantages and disadvantages of the new definitions of the kilogram, mole, ampere, and kelvin based on various sets of constants chosen from the atomic mass unit, Avogadro constant, elementary electric charge, Boltzmann constant, Planck constant, and permeability of free space are analyzed.

Keywords

redefinition of the SI units kilogram mole ampere kelvin fundamental physical constants 

References

  1. 1.
    V. N. Melnikov, “Gravitation and cosmology as key problems of the millennium,” Einstein Century Int. Conf.: AIP Conf. Proc., Paris, No. 861, 109–126 (2006).Google Scholar
  2. 2.
    P. J. Mohr, D. B. Newell, and B. N. Taylor, “CODATA recommended values of the fundamental physical constants (2014),” arXiv:1507.07956v1-2015.Google Scholar
  3. 3.
    Bureau International des Poids et Mesures, www.bipm.org, acces. May 1, 2016.
  4. 4.
    I. M. Mills, “Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing CIPM recommendation 1 (CI-2005),” Metrologia, 43, No. 3, 227–246 (2006).Google Scholar
  5. 5.
    M. J. T. Milton, R. Davis, and N. Fletcher, “Towards a new SI: a review of progress made since 2011,” Metrologia, 51, No. 3, R21–R30 (2014).Google Scholar
  6. 6.
    G. Girard, “The third periodic verification of national prototypes of the kilogram,” Metrologia, 31, 317–336 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    B. N. Taylor and P. J. Mohr, “On the redefinition of the kilogram,” Metrologia, 36, 63–66 (1999).ADSCrossRefGoogle Scholar
  8. 8.
    C. A. Sanchez, “A determination of Planck’s constant using the NRC watt balance,” Metrologia, 51, No. 2, S5–S14 (2014).Google Scholar
  9. 9.
    Y. Azuma, “Improved measurement results for the Avogadro constant using a 28Si-enriched crystal,” Metrologia, 52, 360–375 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    C. A. Sanchez, “Corrigendum to the 2014 NRC determi nation of Planck’s constant,” Metrologia, 52, No. 4, L23 (2015).Google Scholar
  11. 11.
    Recommendations of the Consultative Committee for Thermometry Submitted to the International Committee for Weights and Measures, www.bipm.org/cc/CCT/Allowed/Summary_reports/RECOMMENDATION_web_version.pdf, acces. May 1, 2016.
  12. 12.
    J. Gallop, “The quantum electrical triangle,” Phil. Trans. Roy. Soc. A, 363, 2221–2247 (2005).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Tuomo Tanttu, “Three-waveform bidirectional pumping of single electrons with a silicon quantum dot,” ArXiv: 1603.01225.Google Scholar
  14. 14.
    Quantum Ampere: Realisation of the New SI Ampere, https://www.ptb.de/emrp/868.html.
  15. 15.
    L. K. Isaev, S. A. Kononogov, and V. V. Khruschov, “On the redefinition of the four fundamental SI units,” Izmer. Tekhn., No. 2, 3–8 (2013).Google Scholar
  16. 16.
    V. V. Khruschov, “On the optimum choice of fundamental physical constants with fixed values for redefinition of SI units,” Izmer. Tekhn., No. 10, 3–8 (2011).Google Scholar
  17. 17.
    K. A. Bronnikov, S. A. Kononogov, and V. N. Melnikov, “Variations in the fine structure constant and multidimensional gravitation,” Izmer. Tekhn., No. 1, 7–13 (2013).Google Scholar
  18. 18.
    K. A. Bronnikov, S. A. Kononogov, and V. N. Melnikov, “Variations in the gravitational constant G in generalized theories of gravitation,” Izmer. Tekhn., No. 11, 22–26 (2014).Google Scholar
  19. 19.
    K. A. Bronnikov, V. D. Ivashchuk, M. I. Kalinin, et al., “On the new defi nitions for the base SI units. Why the atomic kilogram is preferable,” Izmer. Tekhn., No. 2, 11–18 (2015).Google Scholar
  20. 20.
    N. Fletcher, R. S. Davis, M. Stock, and M. J. T. Milton, “Modernizing the SI-implications of recent progress with the fundamental constants,” arXiv:1510.08324 (2015), pp. 1–12.Google Scholar
  21. 21.
    F. Pavese, “The new SI and fundamental constants: different meanings assigned to the same data, and how to proceed from recommended numerical values to their stipulation and beyond,” arXiv:1601.00857 (2016), Vol. 2, pp. 1–13.Google Scholar
  22. 22.
    Ch. J. Borde, “Reforming the international system of units: on our way to redefine the base units solely from fundamental constants and beyond,” arXiv:1602.01752 (2016), pp. 1–29.Google Scholar
  23. 23.
    P. Becker, P. de Bievre, K. Fujii, et al., “Considerations on future redefinitions of the kilogram, the mole and of other units,” Metrologia, 44, 1–14 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    N. Fletcher, G. Rietveld, J. Olthoff, et al., “Electrical units in the new SI: saying goodbye to the 1990 Values,” NCSLI Measure J. Meas. Sci., 9, 30–35 (2014).Google Scholar
  25. 25.
    V. D. Ivashchuk, P. K. Isaev, S. A. Kononogov, et al., “Redefinition of the mole and results of measuring the Avogadro constant by the method of crystalline silicon spheres,” Izmer. Tekhn., No. 7, 38–43 (2015).Google Scholar
  26. 26.
    M. Gläser, “Redefinition of the kilogram and the impact on its future dissemination,” Metrologia, 47, 419–428 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    H. Bettin, K. Fujii, J. Man, et al., “Accurate measurements of the Avogadro and Planck constants by counting silicon atoms,” Ann. Phys. (Berlin), 525, 680–687 (2013).ADSCrossRefGoogle Scholar
  28. 28.
    J. Bouchendira, “State of the art in the determination of the fine structure constant: test of Quantum Electrodynamics and determination of h/m u,” ibid., 484–492.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • K. A. Bronnikov
    • 1
    • 2
  • V. D. Ivashchuk
    • 1
    • 2
  • M. I. Kalinin
    • 1
  • V. N. Mel’nikov
    • 1
  • V. V. Khruschov
    • 1
    • 3
  1. 1.All-Russia Research Institute of Metrological Service (VNIIMS)MoscowRussia
  2. 2.Russian University of the Friendship of Peoples (RUDN)MoscowRussia
  3. 3.National Research Center Kurchatov InstituteMoscowRussia

Personalised recommendations