Skip to main content
Log in

Emission of Gravitational Waves and Their Detection

  • FUNDAMENTAL PROBLEMS IN METROLOGY
  • Published:
Measurement Techniques Aims and scope

Results are reported from the first detection of perturbations of space-time, gravitational waves of cosmic origin. An alternative approach to estimating the energy losses through gravitational waves in a binary system of astrophysical objects is introduced. Possibilities for further study are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. A black hole is the simplest astrophysical object, which is characterized by mass, angular momentum (spin), and possibly charge. Instead of a physical boundary, these objects are described by a conditional event horizon at the Schwarzschild radius r S = 2GM/c 2.

References

  1. B. P. Abbott, R. Abbott, T. D. Abbott, et al. (a total of 1280 authors, LlGO Scientific Collaboration and Virgo Collaboration), “Observation of gravitational waves from a binary black-hole merger,” Phys. Rev. Lett., 116 061102 (2016), DOI: http://dx.doi.org/10.1103/PhysRevLett.116.061102.

  2. B. P. Abbott, R. Abbott, T. D. Abbott, et al. (a total of 1280 authors), “Astrophysical implications of the binary black hole merger gw150914,” Astrophys. J. Lett., 818, No. 2 (2016), DOI: http://dx.doi.org/10.3847/2041-8205/818/2/L22.

  3. G. N. Izmailov, Gravitation. A Challenge for Experiment, LAMBERT Acad. Publ., Saarbrucken (2011).

    Google Scholar 

  4. G. N. Izmailov, “Transverse cross section of gravitational antennas, vacuum rigidity, and the weakness of gravitational waves,” Izmer. Tekhn., No. 5, 5–9 (2011).

  5. A. Einstein and N. Rosen, “On gravitational waves,” J. Franklin Inst., 223, No. 1, 43–54 (1937), DOI: 10.1016/S0016-0032(37)90583-0.

    Article  ADS  MATH  Google Scholar 

  6. H. Bondi, “Plane gravitational waves in general relativity,” Nature, 179, 1072–1073 (1957), DOI: 10.1038/1791072a0.

    Article  ADS  MATH  Google Scholar 

  7. R. Feynman, “An expanded version of the remarks by R. P. Feynman on the reality of gravitational waves,” The Role of Gravitation in Physics: Proc. Conf., Chapel Hill NC, USA (1957), p. 143.

  8. F. Pirani, “Invariant formulation of the theory of gravitational radiation,” in: Latest Problems in Gravitation, D. Ivanenko (ed.), IIL, Moscow (1961).

  9. J. H. Taylor, L. A. Fowler, and P. M. McCulloch, “Measurements of general relativistic effects in the binary pulsar PSR 1913+16,” Nature, 277, 437–440 (1979), http://dx.doi.org/10.1038/277437a0.

  10. M. Kramer, I. H. Stairs, R. N. Manchester, et al., “Tests of general relativity from timing the double pulsar,” Science, 314, No. 5796, 97–102 (2006), arXiv:astro-ph/0609417.

  11. M. E. Gertsenshtein and V. I. Pustovoit, “Detection of low-frequency gravitational waves,” Zh. Eksp. Teor. Fiz., 43, No. 2(8), 605–607 (1962).

  12. A. I. Golovashkin, G. N. Izmaïlov, G. V. Kuleshova, et al., “On a possibility of laboratory observation of the Lense-Thirring effect by SQUlD,” Proc. lnt. Conf. PIRT 2009, Bauman MSTU, Moscow (2009), pp. 146–154.

  13. A. D. Dolgov and D. Ejlli, “Resonant high energy graviton to photon conversion at the post-recombination epoch,” Phys. Rev. D, 87, No. 10, 104007 (2013), Arxiv:1303.1556 [gr-qc].

  14. N. I. Kolosnitsyn and V. N. Rudenko, “Gravitational Hertz experiment with electromagnetic radiation in a strong magnetic field,” Phys. Scr., 90, No. 7, 074059 (2015), http://iopscience.iop.org/1402-4896/90/7/074059.

  15. A. I. Golovashkin, L. N. Zherikhina, A. M. Tskhovrebov, et al., “Ordinary SQUID interferometers and interferometers on the matter waves in superfluid helium: The role of quantum fluctuations,” Zh. Eksp. Teor. Fiz., 138, No. 2, 373–380 (2010).

    Google Scholar 

  16. P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “New method for gravitational wave detection with atomic sensors,” Phys. Rev. Lett., 110, 171102 (2013).

    Article  ADS  Google Scholar 

  17. V. S. Gorelik, “Optics of globular photon crystals,” Kvant. Elektron., 37, No. 5, 409–432 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  18. L. N. Zherikhina, G. N. Izmailov, and A. M. Tskhovrebov, “Quantum interferometer based on compressed states with paramagnetic modulation of kinetic inductance,” Izmer. Tekhn., No. 5, 10–15 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Izmailov.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 6, pp. 6–9, June, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izmailov, G.N. Emission of Gravitational Waves and Their Detection. Meas Tech 59, 560–564 (2016). https://doi.org/10.1007/s11018-016-1008-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-016-1008-z

Keywords

Navigation