Skip to main content
Log in

A Sensor of Graphite Paper with Multiwalled Nanotubes

  • PHYSICOCHEMICAL MEASUREMENTS
  • Published:
Measurement Techniques Aims and scope

The results of a voltage-current characteristics study of sensors made of graphite paper with multiwall nanotubes are presented. It has been found experimentally that these samples are usable as gas sensors for the detection of NH3, H2, and Cl2 in air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yu. Wang and J. T. W. Yeow, “A review of carbon nanotube-based gas sensors,” J. Sensors, Art. ID 493904 (2009).

  2. Yu. Wong, W. P. M. Kang, J. L. Davidson, et al., “A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection,” Sensors and Actuators B, 93, No. 1–3, 327–332 (2003).

  3. K. A. Mirica, J. G. Weis, J. M. Schnorr, et al., “Mechanical drawing of gas sensors on paper,” Angew. Chemie Int. Ed., 51, No. 43, 1740–1745 (2012).

    Article  Google Scholar 

  4. B. Esser, J. M. Schnorr, and T. M. Swager, “Selective detection of ethylene gas using carbon nanotube-based devices: utility in determination of fruit ripeness,” Angew. Chemie Int. Ed., 51, No. 23, 5752–5756 (2012).

    Article  Google Scholar 

  5. J. Kong, N. R. Franklin, C. Zhou, et al., “Nanotube molecular wires as chemical sensors,” Science, 287, No. 5453, 622–625 (2000).

  6. J. R. Wood, Q. Zhao, M. D. Frogley, et al., “Carbon nanotubes: from molecular to macroscopic sensors,” Phys. Rev., 62, No. 11, 7571–7575 (2000).

    Article  ADS  Google Scholar 

  7. J. Li and N. T. Nog, “Carbon Nanotube Sensors,” in: Encyclopedia of Nanoscience and Nanotechnology, Amer. Sci. Publ. (2004), Vol. 1, pp. 591–601.

    Google Scholar 

  8. S. Chopra, A. Pham, J. Gallard, et al., “Carbon-nanotube-based resonant-circuit sensor for ammonia,” Appl. Phys. Lett., 80, No. 24, 4632–4634 (2002).

    Article  ADS  Google Scholar 

  9. S. Supple and N. Quirke, “Rapid imbibition of fl uids in carbon nanotubes,” Phys. Rev. Lett., 90, No. 21, 214501–214514 (2003).

    Article  ADS  Google Scholar 

  10. A. Modi, N. N. Koratkar, E. Lass, et al., “Miniaturized gas ionization sensors using carbon nanotubes,” Nature, 424, 171–174 (2003).

    Article  ADS  Google Scholar 

  11. S. V. Antonenko, O. S. Malinovskaya, and S. N. Mal’tsev, “Synthesis of carbon nanotubes by current annealing graphite paper,” Prib. Tekhn. Experim., 50, No. 4, 123–124 (2007).

    Google Scholar 

  12. S. V. Antonenko and S. N. Mal’tsev, “Synthesis methods of carbon nanotubes using magnetron sputtering at direct current,” Prib. Tekhn. Experim., 48, No. 3, 150–152 (2005).

    Google Scholar 

  13. N. Sinha, J. Ma, and J. T. W. Yeow, “Carbon nanotube-based sensors,” J. Nanosci. Nanotechnol., 6, No. 2, 573–590 (2006).

    Article  Google Scholar 

  14. V. I. Troyan, P. V. Borisyuk, O. S. Vasil’ev, et al., “Measuring local thermoEMF of metals by scanning tunneling microscopy,” Izmer. Tekhn., 8, 9–12 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Antonenko.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 5, pp. 69–71, May, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonenko, S.V. A Sensor of Graphite Paper with Multiwalled Nanotubes. Meas Tech 59, 551–554 (2016). https://doi.org/10.1007/s11018-016-1006-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-016-1006-1

Keywords

Navigation