Advertisement

Measurement Techniques

, Volume 59, Issue 3, pp 293–302 | Cite as

Application of a Neural Network Approach to Measurements of Cosmic Ray Fluxes

  • A. Yu. IstratovEmail author
  • K. V. Zakharchenko
  • A. F. Kaperko
  • V. A. Kolyubin
  • V. P. Kulagin
  • R. I. Kurochkin
Article

A neural network approach for processing the output data from a spectrometer with diamond detectors on a spacecraft is discussed. A mathematical apparatus for obtaining differentiable data on fluxes of electrons, protons, and heavy charged particles in 21 energy bands is proposed.

Keywords

spectrometer cosmic radiation neural network diamond detector spacecraft spectrum recovery 

References

  1. 1.
    V. V. Kadilin, V. A. Kolyubin, S. A. L’vov, et al., “Prospects for the use of diamond detectors for detection of charged cosmic ray particles,” Yad. Fiz. Inzhin., 5, No. 2, 138 (2014).Google Scholar
  2. 2.
    K. V. Zakharchenko, A. F. Kaperko, V. A. Kolyubin, et al., “Spectrometric diamond detector of ionizing radiation fluxes for transport space systems,” Izmer. Tekhn., No. 6, 63–67 (2015).Google Scholar
  3. 3.
    S. I. Anevskii, Yu. M. Zolotarevskii, V. N. Krutikov, et al., “Development of methods for reproducing and transfer of the units of spectrometry using synchrotron radiation,” Izmer. Tekhn., No. 3, 31–34 (2015).Google Scholar
  4. 4.
    N. D. Dikusar, Higher Order Polynomial Approximations, OIYaI, Dubna (2014).zbMATHGoogle Scholar
  5. 5.
    G. Alberg, E. Nielson, and J. Walsh, Spline Theory and Its Applications [Russian translation], Mir, Moscow (1972).Google Scholar
  6. 6.
    S. Haykin, Neural Networks: A Complete Course [Russian translation], Izd. Dom Vil’yams, Moscow (2006).Google Scholar
  7. 7.
    A. F. Murray, Application of Neural Nets, Kluwer Academic Publishers (1995).Google Scholar
  8. 8.
    A. V. Kleopin, “Reduction of measurement error in pulse risetimes using an artifi cial neural network,” Izmer. Tekhn., No. 4, pp. 58–60 (2015).Google Scholar
  9. 9.
    L. Fausett, Fundamentals of Neural Networks: Architectures, Algorithms, and Applications, Prentice Hall (1994).Google Scholar
  10. 10.
    A. N. Kolmogorov and S. V. Fomin, Foundations of the Theory of Functions and Functional Analysis, FiS, Moscow (1976).Google Scholar
  11. 11.
    T. V. Panchenko, in: Yu. Yu. Tarasevich (ed.), Genetic Algorithms: Textbook, AGU, Astrakhan (2007).Google Scholar
  12. 12.
    V. V. Kruglov, M. I. Dli, and R. Yu. Golunov, Fuzzy Logic and Artificial Neural Networks, Fizmatlit, Moscow (2001).Google Scholar
  13. 13.
    OST 134-1044-2007, Apparatus, Instruments, Devices, and Equipment for Spacecraft. Methods for Calculating Radiation Conditions on Board Spacecraft and Establishing Specifications for Resistance of Electronic Equipment in Spacecraft to Natural Charged Particle Cosmic Radiation. Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. Yu. Istratov
    • 1
    Email author
  • K. V. Zakharchenko
    • 2
  • A. F. Kaperko
    • 1
  • V. A. Kolyubin
    • 2
  • V. P. Kulagin
    • 1
  • R. I. Kurochkin
    • 1
  1. 1.Moscow Institute of Electronics and Mathematics, National Research University Higher School of Economics (MIEM HSE)MoscowRussia
  2. 2.UralAlmazInvest Production-Technological CenterMoscowRussia

Personalised recommendations