Skip to main content
Log in

High-Temperature Blackbody Models for Use in Photometry, Radiometry, and Radiation Thermometry

  • Published:
Measurement Techniques Aims and scope

High-temperature standard blackbody models are presented. Radiators with adjustable temperature and blackbody models with fixed temperatures based on the melting phase transitions of metal–carbon eutectic alloys, which are alloys characterized by a high degree of stability, high isothermicity, and high emissive power, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. Hartmann, J. Hollandt, B. Khlevnoi, et al., “Blackbody and other calibration sources,” Exp. Meth. Phys. Sci., 42, 241–295 (2009).

    Article  Google Scholar 

  2. B. B. Khlevnoi, “Metrological investigations of standard high-temperature pyrographite black bodies,” Izmer. Tekhn., No. 12, 26–30 (2001).

  3. V. I. Sapritsky, S. P. Morozova, S. A. Ogarev, et al., “Assurance of the uniformity of measurements of quantities that characterize noncoherent optical radiation,” Izmer. Tekhn., No. 11, 12–16 (2005).

  4. V. I. Sapritskii, S. A. Ogarev, B. B. Khlevnoi, et al., “Development of metal–carbon high-temperature fixed-point blackbodies for precision photometry and radiometry,” Metrologia, 40, S128–S131 (2003).

    Article  ADS  Google Scholar 

  5. B. V. Khlevnoi, “The use of high-temperature phase transitions of eutectics for precision reproduction of radiometric quantities in the visible and ultraviolet regions of the spectrum,” Izmer. Tekhn., No. 5, 14–17 (2001).

  6. B. B. Khlevnoi, S. A. Ogarev, V. I. Sapritskii, et al., “Blackbody-type standard sources in the range 100–3500 K for precision measurements in radiometry, photometry, and optical thermometry,” Izmer. Tekhn., No. 11, 29–34 (2005).

  7. B. B. Khlevnoi, M. L. Samoilov, I. A. Grigoryeva, et al., “Development of high-temperature blackbodies and furnaces for radiation thermometry,” Int. J. Thermophys., 32, 1686–1696 (2011).

    Article  ADS  Google Scholar 

  8. B. B. Khlevnoi, M. K. Sakharov, S. A. Ogarev, et al., “Investigation of furnace uniformity and its effect on high-temperature fixed-point performance,” Int. J. Thermophys., 29, No. 1, 271–284 (2008).

    Article  ADS  Google Scholar 

  9. P. Sperfeld, S. Pape, B. Khlevnoy, and A. Burdakin, “Performance limitations of carbon-cavity blackbodies due to absorption bands at the highest temperatures,” Metrologia, 46, S170–S173 (2009).

    Article  ADS  Google Scholar 

  10. B. B. Khlevnoi, N. J. Harrison, L. J. Rogers, et al., “Intercomparison of radiation temperature measurements over the temperature range from 1600 K to 3300 K,” Metrologia, 40, S39–S44 (2003).

    Article  ADS  Google Scholar 

  11. S. A. Ogarev, B. B. Khlevnoi, M. L. Samoilov, and A. V. Puzanov, “High temperature blackbody BGB2000/40 for calibration of radiation thermometers and thermocouple,” AIP Conf. Proc., 1552, 660–665 (2013).

    Article  ADS  Google Scholar 

  12. A. Prokhorov, “Effective emissivities of isothermal blackbody cavities calculated by the Monte Carlo method using the three-component BRDF model,” Appl. Opt., 51, 2322–2332 (2012).

    Article  Google Scholar 

  13. A. Prokhorov, V. I. Sapritskii, B. B. Khlevnoi, and V. Gavrilov, “Alternative methods of blackbody thermodynamic temperature measurement above silver point,” Int. J. Thermophys., 36, No. 2–3, 262–266 (2015).

    ADS  Google Scholar 

  14. V. I. Sapritskii, B. B. Khlevnoi, V. B. Khromchenko, et al., “High temperature fixed-point blackbodies based on metal-carbon eutectics for precision measurements in radiometry, photometry, and radiation thermometry,” AIP Conf. Proc., 684, 273–278 (2003).

    Article  ADS  Google Scholar 

  15. A. Burdakin, M. Sakharov, B. Khlevnoi, et al., “Investigation of impurity elimination effect in metal-carbon alloys,” Int. J. Thermophys., 29, No. 3, 958–968 (2008).

    Article  ADS  Google Scholar 

  16. B. B. Khlevnoi, Yu. A. Sil’d, M.S. Matveev, et al., “Comparative studies of ampules of high-temperature fusion data point of the eutectic cobalt–carbon created at VNIIM and VNIIOFI,” Izmer. Tekhn., No. 1, 49–53 (2013).

  17. B. B. Khlevnoy, I. A. Grigor’eva, M. L. Samoylov, and Y. Yamada, “Comparison of Re-C fixed point cells and their T-90 temperatures between NMIJ and VNIOFI,” Int. J. Thermophys., 32, No. 7–8, 1753–1762 (2011).

    Article  ADS  Google Scholar 

  18. B. B. Khlevnoy, I. A. Grigor’eva, and D. A. Otryaskin, “Development and investigation of WC–C fixed-point cells,” Metrologia, 49, No. 2, S59–S67 (2012).

    Article  ADS  Google Scholar 

  19. B. B. Khlevnoy and I. A. Grigor’eva, “Long-term stability of WC–C peritectic fixed point,” Int. J. Thermophys., 36, 367–373 (2015).

    Article  ADS  Google Scholar 

  20. B. B. Khlevnoi, I. A. Grigor’eva, and N. A. Ibragimov, “New method of filling of high-temperature fixed-point cells based on metal-carbon eutectics/peritectics,” Int. J. Thermophys., 32, No. 7–8, 1763–1772 (2011).

    Article  ADS  Google Scholar 

  21. B. B. Khlevnoi, V. R. Gavrilov, D. A. Otryaskin, et al., “Measurement of the thermodynamic temperature of high-temperature data points,” Izmer. Tekhn., No. 4, 53–57 (2013).

Download references

The present study was carried out with the use of a plant for precision measurements of the radiometric and spectroradiometric characteristics of sources and detectors of radiation in the spectral range 1 nm to 20 μm with the support of the Ministry of Education and Science of Russia (Agreement No. 14.592.21.0001, August 8, 2014; unique identifier of studies RFMEFI59214X0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Ogarev.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 11, pp. 51–55, November, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogarev, S.A., Khlevnoi, B.B., Samoilov, M.L. et al. High-Temperature Blackbody Models for Use in Photometry, Radiometry, and Radiation Thermometry. Meas Tech 58, 1255–1260 (2016). https://doi.org/10.1007/s11018-016-0880-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-016-0880-x

Keywords

Navigation