Skip to main content

Application of Atomic Interferometers in Gravimetry

With the development of laser fountain cooling and technologies for the control of the motion of atoms in Russia it has become possible to create atomic interferometric gravimeters with accuracy characteristics comparable to those of free-fall corner-reflector gravimeters. The short-term stability of the atomic gravimeters exceeds that of existing gravimeters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. P. R. Berman (ed.), Atom Interferometry, Academic Press, San Diego (1997).

    Google Scholar 

  2. F. Sorrentino et al., “Sensitive gravity-gradiometry with atom interferometry: progress towards an improved determination of gravitational constant,” New J. Phys., 12, 095009–096009 (2010).

    Article  ADS  Google Scholar 

  3. G. Stern et al., “Light-pulse atom interferometry in microgravity,” Eur. Phys. J. D, 53, 353–357 (2009).

    Article  ADS  Google Scholar 

  4. I. Robinson and B. Kibble, “An initial measurement of Planck's constant using the NPL Mark II watt balance,” Metrologia, 44, 427–440 (2007).

    Article  ADS  Google Scholar 

  5. A. Peters, K. Chung, and S. Cho, “High-precision gravity measurement using atom interferometry,” Metrologia, 38, 25–61 (2001).

    Article  ADS  Google Scholar 

  6. T. Muller et al., “A compact dual atom interferometer gyroscope based on laser-cooled rubidium,” Eur. Phys. J. D, 53, 273–281 (2009).

    Article  ADS  Google Scholar 

  7. J. Hinderer et al., “Tides, earthquakes, and ground noise as seen by the absolute gravimeter FG5 and its superspring; comparison with a superconducting gravimeter and a broadband seismometer,” Metrologia, 39, 495–501 (2002).

    Article  ADS  Google Scholar 

  8. L. Vitushkin et al., “Results of the Sixth International Comparison of Absolute Gravimeters, ICAG-2001,” Metrologia, 39, 407–424 (2002).

    Article  ADS  Google Scholar 

  9. Yu. I. Domnin et al., “The MTsR-F2 fountain-type cesium frequency standard,” Izmer. Tekhn., No. 10, 26–30 (2012); Measur. Techn., 55, No. 10, 1155–1162 (2012).

  10. Q. Bodart et al., “Cold atom pyramidal gravimeter with a single laser beam,” Appl. Phys. Lett., 96, 134101 (2010).

    Article  ADS  Google Scholar 

  11. J. Le Gouet et al., “Limits to the sensitivity of a low noise compact atomic gravimeter,” Appl. Phys. B, 92, 133–144 (2008).

    Article  ADS  Google Scholar 

  12. G. Santarelli et al., “Quantum projection noise in an atomic fountain: A high stability cesium frequency standard,” Phys. Rev. Lett., 82, 4619–4622 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Baryshev.

Additional information

Translated from Izmeritel'naya Tekhnika, No. 12, pp. 3–6, December, 2014.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baryshev, V.N., Blinov, I.Y. Application of Atomic Interferometers in Gravimetry. Meas Tech 57, 1333–1337 (2015). https://doi.org/10.1007/s11018-015-0630-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-015-0630-5

Keywords

  • gravimetry
  • atomic interferometry
  • atomic gravimeter
  • quantum projection noise