Skip to main content
Log in

Fiber-Optical Spectroscopy for Monitoring the Electro-Oxidation of Metals

  • Published:
Measurement Techniques Aims and scope

A method of investigating phase-nonuniform metal-oxide surface layers using a fiber-optic spectrometer is presented. The reflection coefficients of the metal at different wavelengths are processed by algorithms of spectrotomography, modified to reflectometry, which enables the thickness and chemical composition of the nonuniform surface layers to be monitored. An example of a calculation of the parameters of oxide films on the surface of Fe–18Cr alloy, processed in a furnace and by electrical-contact heating, is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. I. Herman, Optical Diagnostics for Thin Film Processing, Academic Press, New York (1996).

    Google Scholar 

  2. I. A. Gagina et al., “Fourier-IR-spectroscopy in the prolonged corrosion monitoring of the interaction of commercial sheet aluminum with carbon tetrachloride at room temperature,” Fizikokhim. Poverkhn. Zash. Mater., 48, No. 5, 495–500 (2012).

    Google Scholar 

  3. M. A. Petrunin et al., “Directional formation and protective action of self-organizing vinyl siloxane nanolayers on a copper surface,” Fizikokhim. Poverkhn. Zash. Mater., 48, No. 6, 554–563 (2012).

    MathSciNet  Google Scholar 

  4. S. Martellucci, A. N. Chester, and A. G. Mignani (eds.), Optical Sensors and Microsystems. New Concepts, Materials, Technologies, Plenum Publ., New York (2000).

    Google Scholar 

  5. V. A. Kotenev, Optical and Laser Methods in Investigations of Corrosion Problems, Helsinki University of Technology, Finland (1994), pp. 1–26.

  6. R. Azzam and N. Bashara, Ellipsometry and Polarized Light [Russian translation], Mir, Moscow (1981).

    Google Scholar 

  7. V. A. Kotenev, “Ellipsometric tomography,” Proc. SPIE, 1843, 259 (1992).

    Article  ADS  Google Scholar 

  8. A. N. Tikhonov and V. Ya. Arsenin, Methods of Solving Il-Posed Problems [in Russian], Nauka, Leningrad (1986).

    Google Scholar 

  9. A. F. Verlan and V. S. Sizikov, Integral Equations [in Russian], Naukova Dumka, Kiev (1986).

    Google Scholar 

  10. S. Mrovets and T. Verber, Modern Heat-Resistant Materials: A Reference Book [in Russian], Metallurgiya, Moscow (1986).

    Google Scholar 

  11. V. A. Kotenev and A. Yu. Tsivadze, “Probe Raman spectroscopy in monitoring the electrical degradation of thin-film conductors,” Izmer. Tekhn., No. 12, 54–58 (2011); Measur. Techn., 54, No. 12, 1421–1426 (2011).

  12. T. Tanaka, “Optical constants of polycrystalline 3d transition metal oxides in the wavelength region 350 to 1200 nm,” Jap. J. Appl. Phys., 18, No. 6, 1043–1047 (1979).

    Article  ADS  Google Scholar 

  13. E. Idczak and E. Oleszkiewicz, “Ellipsometric examination of the thermal oxidation process for plated chromium films,” Thin Solid Films, 77, No. 4, 301–303 (1981).

    Article  ADS  Google Scholar 

  14. V. A. Kotenev, “Low-temperature passivity of iron in gaseous oxidation,” Zash. Metallov, 39, No. 4, 341–351 (2003).

    Google Scholar 

  15. V. A. Kotenev et al., “Electrical contact oxidation of vacuum iron nanocondensates,” Fizikokhim. Poverkhn. Zash. Mater., 47, No. 6, 659–667 (2011).

    Google Scholar 

  16. V. A. Kotenev et al., “The effect of contact heating by a surface current on isothermal gaseous oxidation of chrome steels,” Fiz. Khim. Obrab. Mater., No. 4, 45–52 (1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kotenev.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 10, pp. 29–32, October, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotenev, V.A., Tsivadze, A.Y. Fiber-Optical Spectroscopy for Monitoring the Electro-Oxidation of Metals. Meas Tech 56, 1134–1139 (2014). https://doi.org/10.1007/s11018-014-0344-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-014-0344-0

Keywords

Navigation