Skip to main content
Log in

Modeling and estimation of the parameters of the morphology of the surfaces of thin films of nano- and micro-electromechanical systems

  • Mechanical Measurements
  • Published:
Measurement Techniques Aims and scope

Thin-film nano- and micro-electromechanical systems of pressure transducers, experimental and theoretical research methods, and the results of estimation of the parameters of the morphology of the surfaces of films are considered. A model and algorithm for the description of the growth of thin films that takes diffusion into account are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E. M. Belozubov,V. A. Vasiliev, and N. V. Gromkov, “Thin-film nano- and micro-electromechanical systems – the basis of contemporary and future pressure sensors for rocket and aviation engineering,” Izmer. Tekhn., No. 7, 35–38 (2009); Measur. Techn., 52, No. 7, 739–744.

    Article  Google Scholar 

  2. J. Venables, Introduction to Surface and Thin Film Processes, Univ. Press, Cambridge (2000).

    Book  Google Scholar 

  3. K. Oura et al., Surface Science: An Introduction, Springer, New York (2010).

    Google Scholar 

  4. B. Hans and D. Krause, Thin Films on Glass, Springer, New York (2010).

    Google Scholar 

  5. J. E. Mahan, Physical Vapor Deposition of Thin Films, Wiley-Interscience, New York (2000).

    Google Scholar 

  6. S. F. Wilkinson and D. E. Edwards, “The surface statistics of a granular aggregate,” Proc. Roy. Soc., 17, 17–31 (1982).

    Google Scholar 

  7. M. Kardar, G. Parisi, and Y.-C. Zhang, “Dynamic scaling of growing interfaces,” Phys. Rev. Lett., 56, 889–892 (1986).

    Article  ADS  MATH  Google Scholar 

  8. M. Vicsek and T. Vicsek, “Fractal growth models,” ERCIM News, No. 29, 36–39 (1997).

  9. T. G. Mattos, J. G. Moreira, and A. P. F. Atman, “A discrete method to study stochastic growth equations: a cellular automata perspective,” J. Phys. A: Math. Theor., 40, 13245 (2007).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. P. Bhattacharyya, “Growth of surfaces generated by probabilistic cellular automata,” Int. J. Modern Phys. C, No. 1, 165–181 (1999).

  11. A. L. Barabasi and H. E. Stanley, Fractal Concepts in Surface Growth, Univ. Press, Cambridge (1995).

    Book  MATH  Google Scholar 

  12. J. C. Russ, The Image Processing Handbook, CRC Press, Boca Raton (2011).

    MATH  Google Scholar 

  13. Jeung Hun Park and Chae-Ryung Cho, “Deposition-temperature effects on AZO thin films prepared by RF magnetron sputtering and their physical properties,” Korean Phys. Soc., 49, 584–588 (2006).

    Google Scholar 

  14. A. Og. Dikovska et al., “Thin ZnO films produced by pulsed laser deposition,” J. Optoelectr. Adv. Mater., 7, No. 3, 1329–1334 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Vasiliev.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 12, pp. 13–16, December, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasiliev, V.A., Chernov, P.S. Modeling and estimation of the parameters of the morphology of the surfaces of thin films of nano- and micro-electromechanical systems. Meas Tech 55, 1350–1355 (2013). https://doi.org/10.1007/s11018-013-0133-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-013-0133-1

Keywords

Navigation