Advertisement

Measurement Techniques

, Volume 55, Issue 5, pp 542–545 | Cite as

Modulation interference microscope as a tool for measuring the linear dimensions of nanostructures

  • A. G. Andreev
  • S. N. Grigoriev
  • E. V. Romash
  • S. V. Bushuev
  • P. S. Ignatiev
  • A. V. Loparev
  • K. V. Indukaev
  • P. A. Osipov
Article
  • 69 Downloads

A new version of a modulation interference microscope with long-path coordinate table resting on aeromagnetic guides that enables travel of the microscope with deviation from linearity of at most 0.1 μm on path lengths up to 300 mm has been developed. The metrological aspects of the use of the microscope for measurement of the linear dimensions of nanostructures are considered. Results of measurements of the basic parameters of the topology of integrated circuits are presented.

Keywords

modulation interference microscope nanometrology 

References

  1. 1.
    S. N. Grigoriev et al., “Determining the effective fractal dimension of nanodimensional coatings with the aid of magnetic field,” Techn. Phys. Lett., 37, No. 12, 1176–1178 (2011).CrossRefGoogle Scholar
  2. 2.
    S. N. Grigoriev and V. I. Teleshevskii, “Measurement problems in technological shaping processes,” Izmer. Tekhn., No. 7, 3–7 (2011); Measur. Techn., 54, No. 7, 744–749 (2011).Google Scholar
  3. 3.
    ISO 5436-1:2000, Geometric Characteristics of Articles. Surface Texture: Profile Method, Standards.Google Scholar
  4. 4.
    J. Liu et al., “Phase-shift resolving confocal microscopy with high axial resolution, wide range and reflectance disturbance resistibility,” Opt. Express, 17, No.18, 16281–16290 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    V. P. Tychinskii, “Dynamic phase microscopy: is a “dialogue” with the cell possible?” Usp. Fiz. Nauk, 177, 535–552 (2007).CrossRefGoogle Scholar
  6. 6.
    G. N. Vishnyakov et al., “Examining a transparent object with a linnik tomographic microscope,” Izmer. Tekhn., No. 1, 46–49 (1999); Measur. Techn., 42, No. 1, 66–70 (1999).Google Scholar
  7. 7.
    V. A. Andreev and K. V. Indukaev, “The problem of subrayleigh resolution in interference microscopy,” J. Russ. Laser Res., 24, No. 3, 220–225 (2003).CrossRefGoogle Scholar
  8. 8.
    A. V. Loparev et al., “A high-speed modulation interference microscope for biomedical studies,” Izmer. Tekhn., No. 1, 60–64 (2009); Measur. Techn., 42, No. 1, 66–70 (2009).Google Scholar
  9. 9.
    P. S. Ignatiev, A. V. Loparev, and A. Korshak, “Laser 3D MIM profilometers,” Fotonika, No. 4, 54–56 (2010).Google Scholar
  10. 10.
    V. I. Teleshevskii and S. G. Grishin, “A heterodyne laser interferometer with digital phase conversion,” Izmer. Tekhn., No. 6, 13–18 (2006); Measur. Techn., 49, No. 6, 545–551 (2006).Google Scholar
  11. 11.
    Yu. A. Maksin, V. I. Teleshevskii, and P. V. Temnikov, “System for computer aided design and fabrication of means of linear-angle measurement based on three-dimensional parametric modeling,” Izmer. Tekhn., No. 8, 13–16 (2011); Measur. Techn., 54, No. 8, 869–873 (2011).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • A. G. Andreev
    • 1
  • S. N. Grigoriev
    • 1
  • E. V. Romash
    • 1
  • S. V. Bushuev
    • 1
  • P. S. Ignatiev
    • 1
  • A. V. Loparev
    • 1
  • K. V. Indukaev
    • 1
  • P. A. Osipov
    • 1
  1. 1.Moscow State Technological University STANKINMoscowRussia

Personalised recommendations