Skip to main content
Log in

Metrological provision for measurements in fullerene production

  • Published:
Measurement Techniques Aims and scope

A metrological complex is developed for provision of measurement unification during production of carbon nanomaterials, i.e., fullerenes, including measurement chromatographic and mass-spectrometric equipment, a set of procedures for certifying reference standards and state standard specimens, and technological regulations for preparing high-purity fullerenes C60 and C70.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. I. D. Morokhov et al., “Structure and properties of small metallic particles,” UFN, 133, No. 4, 653–692 (1981).

    Article  Google Scholar 

  2. G. M. Gryaznov and V. F. Petrunin, “Ultrafine materials, i.e., nanocrystals,” Konvers. Mashinostr., No. 4, 24–26 (1996).

  3. MI 3238-2009, GSI. State Verification Scheme for Measurement Facilities (analytical instruments) of Component Content in Liquid and Solid Substances and Materials.

  4. An Approach to the Metrologically Sound Traceable Assessment of the Chemical Purity of Organic Reference Materials, NIST Special Publ. 1012 (2004).

  5. R. Taylor et al., “Isolation, separation and characterization of the fullerenes C 60 and C 70: the third form of carbon,” J. Chem. Soc. Chem. Commun., 1423–1425 (1990).

  6. H. W. Kroto et al., “Separation and spectroscopy of fullerenes,” Phisica Scripta, 45, 314–318 (1992).

    Article  ADS  Google Scholar 

  7. A. Goel, J. B. Hovard, and J. B. Sansde Vander, “Size analysis of single fullerene molecules by electron microscopy,” Carbon, 42, 1907–1915 (2004).

    Article  Google Scholar 

  8. L. N. Siderov et al., Fullerenes: Teaching Aid [in Russian], Ekzamen, Moscow (2005).

    Google Scholar 

  9. R. Taylor, M. P. Barrow, and T. Drewello, “C 60 degrades to C 120O,” J. Chem. Soc., Chem. Commun., 2497–2498 (1988).

  10. K. Jinno et al., “Separation and identification of higher molecular weight fullerenes by high-performance liquid chromatography with monomeric and polymeric octadecylsilica bonded phases,” Anal. Chem., 65, 2650–2654 (1993).

    Article  Google Scholar 

  11. D. Hemann L. P. Filip Chibant, and R. E. Smally, “Determination of C 60 and C 70 fullerenes in geologic materials by high-performance liquid chromatography,” J. Chromatogr. A, 869, 157–163 (1995).

    Article  Google Scholar 

  12. J. F. Aanacleto and M. A. Quillam, “Liquid chromatography/mass spectrometry investigation of the reversed-phase separation of fullerenes and their derivatives,” Anal. Chem., 65, 236–242 (1993).

    Article  Google Scholar 

  13. K. Jinno et al., “Separation and identification of higher fullerenes in soot extract fullerenes by high-performance liquid chromatography,” Chromatographia, 41, No. 5/6, 353–360 (1995).

    Article  Google Scholar 

  14. J. F. Aanacleto et al., “Analysis of minor constituents in fullerene soot by LC/MS using a heated pneumatic nebulizer interface with atmosphere pressure chemical ionization,” Can. J. Chem., 70, 25558–2568 (1992).

    Article  Google Scholar 

  15. V. Kozlovskii et al., “Novel experimental arrangement developed for direct fullerene analysis by electrospray time-of-flight mass spectrometry,” Rapid Commun. Mass Spectrometry, 18, 780–786 (2004).

    Article  Google Scholar 

  16. M. P. Barrow, R. Taylor, and M. Drewello, “Characterization of fullerenes and fullerene derivatives by nanospray,” Chem. Phys. Lett., 330, 267–274 (2000).

    Article  ADS  Google Scholar 

  17. A. G. Ryabenko, Mechanisms of Formation and Reaction of Carbon Nanoclusters: Author’s Abstr. Diss. Doc. Phys.-Mat. Sci., Chernogolovka (12008).

  18. M. A. Khodorkovskii, “Study of the properties of fullerene structures by laser mass spectrometry,” Zh. Tekhn. Fiz., 79, No. 10, 147–150 (2009).

    Google Scholar 

  19. A. Dupont et al., “Electrospray mass spectrometry of electrochemically ionized molecules: Application to the study of fullerenes,” Tetrahedron Lett. 35, 6083–6086 (1994).

    Article  Google Scholar 

  20. L. Song et al., “Electron capture atmospheric pressure photoionisation mass spectrometry: analysis of fullerenes, perfluorinated compounds and pentafluorobenzil derivatives,” Rapid Commun. Mass Spectrometry, 21, 1343–1351 (2007).

    Article  Google Scholar 

  21. Kong Qing-Yu et al., “Fragmentation mechanism of fullerenes in the positive and negative ion channels,” Chin. Phys. Lett., 18‚ No. 8, 1056–1059 (2001).

    Article  ADS  Google Scholar 

  22. M-MVI 242/02-10, Measurement Procedure. Fullerenes. Measurement of Weight Fraction of Basic Substance in Samples of Pure C 60 and Fullerenes by Highly Efficient Liquid Chromatography with UV- and Mass-Spectrometric Detection, No. FR.1.31.2010.07623.

  23. M-MVI 242/03-10, Measurement Procedure. Fullerenes. Measurement of Weight Fraction of Polyatomic Aromatic Hydrocarbons (PAH) in Fullerene Specimens by Chromato-Mass-Spectrometry with Isotopic Dilution, No. FR.1.31. 2010.07625.

  24. M-MVI 242/04-10, Measurement Procedure. Fullerenes. Measurement of Metal Content (Pb, Cd, Fe, Zn, Cu, Ni, Co) by Mass Spectrometry with Inductively Coupled Plasma and Isotopic Dilution, No. FR.1.31.2010.07624.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Konopelko.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 10, pp. 58–62, October, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krylov, A.I., Konopelko, L.A., Lopushanskaya, E.M. et al. Metrological provision for measurements in fullerene production. Meas Tech 54, 1191–1197 (2012). https://doi.org/10.1007/s11018-012-9870-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-012-9870-9

Keywords

Navigation