Skip to main content
Log in

Optimum choice of fundamental physical constants with fixed values for redefinition of SI units

  • Fundamental Problems in Metrology
  • Published:
Measurement Techniques Aims and scope

The advantages and disadvantages of the procedure of fixing the values of fundamental physical constants (FPC) for redefining the basic SI units are examined. The case in which a fixed value of the Avogadro constant is used simultaneously for new definitions of the unit of mass and the unit of the amount of matter is discussed in detail. A criterion is proposed for choosing the optimum set of FPC with fixed values for redefining basic SI units. A set of FPC compatible with this criterion is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Mills et al., “Redefinition of the kilogram: a decision whose time has come,” Metrologia, 42, 71 (2005).

    Article  ADS  Google Scholar 

  2. Recommendation 1. Preparative Steps Towards New Definitions of the Kilogram, the Ampere, the Kelvin, and the Mole in Terms of Fundamental Constants, CIPM (2005).

  3. I. M. Mills et al., “Redefinition of the kilogram, ampere, kelvin, and mole: a proposed approach to implementing CIPM recommendation 1 (CI-2005),” Metrologia, 43, 227 (2006).

    Article  ADS  Google Scholar 

  4. The International System of Units, BIPM, Sevres (2006).

  5. Resolution 12, CGPM (2007), Official website www.bipm.org, accessed May 15, 2011.

  6. T. Quinn and K. Burnett, “The fundamental constants of physics, precision measurements and the base units of the SI,” Phil. Trans. Roy. Soc., London, A363, 2101 (2005).

    ADS  Google Scholar 

  7. S. A. Kononogov and V. N. Melnikov, “The fundamental physical constants, the gravitational constant, and the SEE space experiment project,” Izmer. Tekhn., No. 6, 3–10 (2005); Measur. Techn., 48, No. 6, 521–531 (2005).

  8. S. A. Kononogov, Metrology and the Fundamental Constants of Physics [in Russian], STANDARTINFORM, Moscow (2008).

    Google Scholar 

  9. Proc. Int. Meeting: Fifty Years of Efforts Toward Quantum SI Units, St. Petersburg (2010).

  10. E. T. Frantsuz, “Fundamental physical constants in the new international system of units (SI),” Izmer. Tekhn., No. 3, 3–7 (2010); Measur. Techn., 53, No. 3, 228–231 (2010).

  11. A. Yu. Ignatiev and B. Carson, “Metrological constraints on the variability of the fundamental constants e, h, and c,” Phys. Lett., A331, 361 (2004).

    ADS  Google Scholar 

  12. S. A. Kononogov and V. V. Khruschov, “On the possibility of replacing the prototype kilogram with an atomic standard for the unit of mass,” Izmer. Tekhn., No. 10, 3–5 (2006); Measur. Techn., 49, No. 10, 953–956 (2006).

  13. Recommendation G1. Considerations on a New Definition of the Kilogram, CCM (2010), Official website www.bipm.org, accessed May 15, 2011.

  14. M. Gläser et al., “Redefinition of the kilogram and the impact on its future dissemination,” Metrologia, 47, 419 (2010).

    Article  ADS  Google Scholar 

  15. P. J. Mohr, B. N. Taylor, and D. B. Newell, “CODATA-2006, CODATA recommended values of the fundamental physical constants: 2006,” Rev. Mod. Phys., 80, 633 (2008).

    Article  ADS  Google Scholar 

  16. B. Andreas et al., “(IAC) Counting the atoms in a 28Si crystal for a new kilogram definition,” Metrologia, 48,S1 (2011).

    Article  ADS  Google Scholar 

  17. B. P. Leonard, “Comments on recent proposals for redefining the mole and kilogram,” Metrologia, 47, L5 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  18. V. V. Khruschov, “Possible definition of the unit of mass and fixed values of the fundamental physical constants,” Izmer. Tekhn., No. 6, 3–9 (2010); Measur. Techn., 53, No. 6, 583–591 (2010).

  19. K. Fujii et al., “Present state of the Avogadro constant determination from silicon crystals with natural isotopic compositions,” IEEE Trans. Instrum. Meas., 54, 854 (2005).

    Article  Google Scholar 

  20. R. L. Steiner, E. R. Williams, and D. Newell, “Towards an electronic kilogram: an improved measurement of the Planck constant and electron mass,” Metrologia, 42, 431 (2005).

    Article  ADS  Google Scholar 

  21. P. Becker et al., “Determination of the Avogadro constant via the silicon route,” Metrologia, 40, 271 (2003).

    Article  ADS  Google Scholar 

  22. M. Wulf and A. B. Zorin, “Error accounting in electron counting experiments,” ArXiv, 0811.3927 (2008).

  23. M. I. Kalinin and S. A. Kononogov, “Redefinition of the unit of thermodynamic temperature in the International System (SI),” Teplofiz. Vys. Temp., 48, No. 1, 26 (2010); High Temperat., 48, No. 1, 23 (2010).

    Google Scholar 

  24. Recommendation T2, CCT (2010), Official website www.bipm.org, accessed May 15, 2011.

  25. B. N. Taylor, “Molar mass and related quantities in the new SI,” Metrologia, 46, L16 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Khruschov.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 10, pp. 3–8, October, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khruschov, V.V. Optimum choice of fundamental physical constants with fixed values for redefinition of SI units. Meas Tech 54, 1103–1110 (2012). https://doi.org/10.1007/s11018-012-9856-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-012-9856-7

Keywords

Navigation