Skip to main content
Log in

Transverse cross section of gravitational antennas, the stiffness of the vacuum, and the weakness of gravitational waves

  • Fundamental Problems in Metrology
  • Published:
Measurement Techniques Aims and scope

The continued absence of positive results for the direct detection of gravitational waves may be related to the existence of fundamental limits on the primary emission power for these waves from astrophysical objects. Some mechanisms, known and under study, for the shedding of the energy of gravitational waves via other radiation channels are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. T. Frantsuz, “Fundamental physical constants in the new international system of units,” Izmer. Tekhn., No. 3, 7–9 (2010); Measur. Techn., 53, No. 3, 228–231 (2010).

    Article  Google Scholar 

  2. K. A. Bronnikov et al, “Current problems in fundamental metrology,” Izmer. Tekhn., No. 4, 27–34 (2010); Measur. Techn., 53, No. 4, 391–401 (2010).

    Article  Google Scholar 

  3. “The LIGO Scientific Collaboration and the Virgo Collaboration. An upper limit on the stochastic gravitational-wave background of cosmological origin,” Nature, 460, 990–994 (2009).

    Article  ADS  Google Scholar 

  4. J. H. Taylor, Jr., “Double pulsars and relativistic gravitation. Nobel lecture,” Usp. Fiz. Nauk, 164, No. 7, 757–764 (1994).

    Article  Google Scholar 

  5. J. M. Weisberg and J. H. Taylor, “The relativistic binary pulsar B1913 + 16: Thirty years of observations and analysis,” in: F. A. Rasio and I. H. Stairs (eds.), Binary Radio Pulsars: Proc. Aspen Winter Conf., Aspen, CO, USA, (2004), Vol. 328, pp. 25–32.

  6. P. Astone et al., “Study of the coincidences between the gravitational wave detectors EXPLORER and NAUTILUS in 2001,” Class. Quantum Grav., 19, 5449–5463 (2002).

    Article  ADS  MATH  Google Scholar 

  7. L. S. Finn, “No statistical excess in EXPLORER/NAUTILUS observations in the year 2001,” Class. Quantum Grav., 20, L37–L44 (2003).

    Article  ADS  MATH  Google Scholar 

  8. V. V. Schmidt, Introduction of Superconductivity [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  9. H. Störmer, “Fractional quantum hall effect. Nobel lecture,” Usp. Fiz. Nauk, 170, No. 3, 304–319 (2000).

    Article  Google Scholar 

  10. M. Kobayashi, “CP-violation and mixing of flavors. Nobel lecture,” Usp. Fiz. Nauk, 179, No. 12, 1312–1318 (2009).

    Article  Google Scholar 

  11. A. S. Chou et al., “Search for axion like particles using a variable baseline photon regeneration technique,” Phys. Rev. Lett., 100, 080402 (2008).

    Article  ADS  Google Scholar 

  12. P. Pugnat et al., “Results from the OSQAR photon regeneration experiment: No light shining through a wall,” Phys. Rev. D, 78, 09200 (2008).

    Article  Google Scholar 

  13. A. Afanasev et al., “Experimental limit on optical photon coupling to light neutral scalar bosons,” Phys. Rev. Lett., 101, 12040 (2008).

    Article  MathSciNet  Google Scholar 

  14. S. Andriamonje et al., “Hidden laser communication through matter,” J. Cosmol. Astropart. Phys., No. 7, 04010 (2007).

    Google Scholar 

  15. P. Sikivie, D. B. Tanner, and K. van Bibber, “Resonantly enhanced axion-photon regeneration,” Phys. Rev. Lett., 98, 172002 (2007).

    Article  ADS  Google Scholar 

  16. J. Jackel, J. Redondo, and A. Ringwald, “Hidden communication through matter – an application of meV-scale hidden photons,” EPL, 87, 10010 (2009).

    Article  ADS  Google Scholar 

  17. J. Jaeckel and A. Ringwald, “Search for hidden sector photons with the ADMX detector,” Phys. Rev. Lett., 105, 171801 (2010).

    Article  Google Scholar 

  18. M. Ahlers et al., “Laser experiments explore the hidden sector,” Phys. Ref. D, 77, 095001 (2008).

    Article  ADS  Google Scholar 

  19. V. S. Gorelik, “Optics of globular photon crystals,” Kvant. Elektr., 37, 409–432 (2007).

    Article  Google Scholar 

  20. A. S. Chou et al., “Search for chameleon particles using a photon-regeneration technique,” Phys. Rev. Lett., 102, 030402 (2009).

    Article  ADS  Google Scholar 

  21. B. F. Schutz, Gravitational Radiation Encyclopedia of Astronomy and Astrophysics, IOP Publ., Macmillan, London (2000).

    Google Scholar 

  22. L. P. Grishchuk, “Relict gravitational waves and cosmology,” Usp. Fiz. Nauk, 175, No. 12, 1289–1303 (2005).

    Article  Google Scholar 

  23. Y. Fukuda et al., “Evidence for oscillation of atmospheric neutrinos,” Phys. Rev. Lett., 81, 1562–1567 (1998).

    Article  ADS  Google Scholar 

  24. J. N. Bahcall and C. Peña-Garay, “A road map to solar neutrino fluxes, neutrino oscillation parameters, and tests for new physics,” JHEP, 11, 004 (2003).

    Article  ADS  Google Scholar 

  25. G. Pagliaroli et al, “Neutrinos from supernovae as a trigger for gravitational wave search,” Phys. Rev. Lett., 103, 031102 (2009).

    Article  ADS  Google Scholar 

  26. B. Greene et al., “Cosmological moduli dynamics,” JHEP, 7, 060 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  27. G. G. Barnaföldi, P. Lévai, and B. Lukács, “Searching extra dimensions in compact stars,” Astron. Nachr., 328, Iss. 8, 809–812 (2007).

    Article  ADS  Google Scholar 

  28. W. C. C. Lima, G. E. A. Matsas, and D. A. T. Vanzella, “Awaking the vacuum in relativistic stars,” Phys. Rev. Lett., 105, 151102 (2010).

    Article  ADS  Google Scholar 

  29. W. C. C. Lima and D. A. T. Vanzella, “Gravity-induced vacuum dominance,” Phys. Rev. Lett., 104, 161102 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Izmailov.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 5, pp. 6–10, May, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izmailov, G.N. Transverse cross section of gravitational antennas, the stiffness of the vacuum, and the weakness of gravitational waves. Meas Tech 54, 479–485 (2011). https://doi.org/10.1007/s11018-011-9752-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-011-9752-6

Key words

Navigation