Skip to main content
Log in

Metrological support to parameter measurement for nanoparticles in technological media

  • Nanometrology
  • Published:
Measurement Techniques Aims and scope

Methods are considered for measuring the parameters of nanoparticles in natural and technological media as used in the nanoindustry. Exact monitoring is required for the parameters of the medium where the nanoparticles are suspended in order to obtain reliable measurement data. Measurement methods are examined for the nanoparticle size range 5–100 nm for aqueous and gaseous media in order to set up a metrological suite for measuring the parameters of nanoparticles in these media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An Assessment of the United States Measurement System: Addressing Measurement Barriers to Accelerate Innovation, NIST Special Publ. 1048 (2006).

  2. ISO 13320-1:1999, Particle Size Analysis. Laser Diffraction Methods. Part 1: General Principles.

  3. ISO/TS 13762:2001, Particle Size Analysis. Small Angle x-Ray Scattering Method.

  4. ISO/CD 22412:2008, Particle Size Analysis. Dynamic Light Scattering (DLS).

  5. ISO/CD 15900:2006, Determination of Particle Size Distribution. Differential Electrical Mobility Analysis for Aerosol Particles.

  6. Yu. V. Julanov, A. A. Lushnikov, and V. A. Zagaynov, Atmospheric Res., 62, Issue 3, 295 (2002).

    Article  Google Scholar 

  7. 8th Nanoforum Rep.: Nanometrology, Glasgow (UK), July (2006); www.nanoforum.org.

  8. I. K. Kikoin, Tables of Physical Quantities: A Handbook [in Russian], Atomizdat, Moscow (1976).

    Google Scholar 

  9. K. Hir, Statistical Mechanics, Kinetic Theory, and Stochastic Processes [Russian translation], Mir, Moscow (1976).

    Google Scholar 

  10. M. Staiger et al., J. Dispersion Sci. and Technol., 23, No. 5, 619 (2002).

    Article  Google Scholar 

  11. J. Miles, NMI TR 12, National Measurement Institute (Australia) (2006).

  12. K. S. Shifrin and I. B. Kolmakov, Izv. AN SSSR, Fizika Atmosfery i Okeana, 3, No. 12, 1271 (1967).

    Google Scholar 

  13. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation, Academic, New York (1969).

    Google Scholar 

  14. ISO 13323-1:2000, Determination of Particle Size Distribution. Single-Particle Light Interaction Methods. Part 1. Light Interaction Considerations.

  15. G. Sem, J. Aerosol Sci., 62, 267 (2002).

    Google Scholar 

  16. J. Bol et al., Staub-Reinhalt. Luft., 30, No. 1, 475 (1971).

    Google Scholar 

  17. P. A. Kouzov, Analysis Principles for the Dispersed Composition of Industrial Dusts and Ground Materials [in Russian], Khimiya, Leningrad (1971).

    Google Scholar 

  18. D. I. Svergun and L. A. Feigin, Small-Angle x-Ray and Neutron Scattering [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  19. D. I. Svergun, J. Appl. Cryst., 25, No. 2, 495 (1992).

    Article  Google Scholar 

  20. A. N. Tikhonov et al., Numerical Methods of Solving Ill-Posed Problems [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  21. B. Chu, Laser Light Scattering, Acad. Press, New York (1974).

    Google Scholar 

  22. H. Cummings and E. R. Pike (eds.), Optical Mixing Spectroscopy and Photon Correlation [Russian translation], Nauka, Moscow (1978).

    Google Scholar 

  23. B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology and Physics, Willey-Intersci., New York (1976).

    Google Scholar 

  24. W. Brown (ed.), Dynamic Light Scattering: The Method and Some Applications, Clarendon Press, Oxford (1993).

    Google Scholar 

  25. A. Wiedensohler, J. Aerosol Sci., 19, No. 3, 387 (1988).

    Article  Google Scholar 

  26. N. A. Fuchs, Geophys. Appl., 56, No. 1, 185 (1963).

    Article  Google Scholar 

  27. K. Willeke and P. A. Baron, Aerosol Measurement: Principles, Techniques, and Applications, Van Nostrand Reinhold, New York (1993).

    Google Scholar 

  28. E. O. Knutson and K. T. Whitby, J. Aerosol Sci., 6, No. 6, 443 (1975).

    Article  Google Scholar 

  29. N. A. Fuchs, Aerosol Mechanics [in Russian], Izd. AN SSSR, Moscow (1955).

    Google Scholar 

  30. Earl O. Knutson, Aerosol Sci. and Technology, 31, No. 2, 83 (2007).

    Article  Google Scholar 

  31. H. Green and W. Lane, Aerosols: Dusts, Smokes, and Mists [Russian translation], Khimiya, Leningrad (1969).

    Google Scholar 

  32. Yu. V. Zhulanov et al., Izv. AN SSSR, Fizika Atmosfery i Okeana, 22, Iss. 5, 488 (1986).

    Google Scholar 

  33. V. A. Zagainov et al., Izv. AN SSSR, Fizika Atmosfery i Okeana, 23, Iss. 12, 1323 (1989).

    ADS  Google Scholar 

  34. V. A. Zagainov et al., Dokl. AN SSSR, 308, Iss. 5, 1087 (1989).

    Google Scholar 

  35. V. A. Zagainov, S. L. Churkin, and B. I. Ogorodnikov, Environmental Protection: Aspects of Ecology and of Product Quality Monitoring [in Russian], Khimiya, Moscow (1992), p. 25.

    Google Scholar 

  36. K. Ehara, C. Hagwood, and K. J. Coakley, J. Aerosol Sci., 27, No. 2, 217 (1996).

    Article  Google Scholar 

  37. E. V. Lesnikov, O. V. Karpov, and D. M. Balakhanov, Scientific Meeting of MIFI 2009: Paper Annotations, Vol. 2 [in Russian], MIFI, Moscow (2009), p. 111.

    Google Scholar 

  38. J. Schlater, ETH-Conf. Combustion Particles, 18th to 20th Aug. 2003; http://www.metals.ch/.

  39. J. Schlater, 7th Intern. Conf. 10th to 15th Sept. 2006; http://www.metals.ch/.

  40. J. Schlater, ETH-Conf. Combustion Generated Particles, 21st to 23rd Aug. 2006; http://www.metals.ch/.

  41. A. Ankilov et al., Atmospheric Res., 62, Iss. 3–4, 177 (2002).

    Article  Google Scholar 

  42. A. Ankilov et al., ibid., 209.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Krasovskii.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 5, pp. 8–15, May, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krasovskii, P.A., Karpov, O.V., Balakhanov, D.M. et al. Metrological support to parameter measurement for nanoparticles in technological media. Meas Tech 52, 449–458 (2009). https://doi.org/10.1007/s11018-009-9307-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-009-9307-2

Key words

Navigation