Skip to main content
Log in

Dispersion of electrocardiogram QT interval. Part 1. Informative parameter or measurement error?

  • Biomedical Measurements
  • Published:
Measurement Techniques Aims and scope

Abstract

Measuring the QT interval parameters on the electrocardiogram (ECG) is considered in calculating the inhomogeneity of the repolarization index in the cardiac ventricles in terms of the QT interval dispersion (QTD) in terms of vector cardiographic and biophysical models for the electrical heart activity. In accordance with the laws of electrodynamics, the length of the ventricular complex should be the same in all leads, with the possible exception of some special cases. QTD arises in practical measurements from various objective and subjective factors that influence the error in measuring the ECG repolarization parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Bokeriya, E. Z. Golukhova, and I. P. Polyakova, Kardiologiya, No. 2, 22 (1977).

  2. C. P. Day, J. M. McComb, and R. W. F. Campbell, Br. Heart J., 63, 342 (1990).

    Google Scholar 

  3. E. Lepeshkin and V. Surawicz, Circulation, 6, 378 (1952).

    Google Scholar 

  4. O. V. Baum et al., Vestnik Aritmologii, 26, 49 (2002).

    Google Scholar 

  5. Yu. P. Nikitin and A. A. Kuznetsov, Kardiologiya, No. 5, 58 (1998).

  6. A. N. Parkhomenko, A. V. Shumakov, and O. I. Irkin, Kardiologiya, No. 4, 83 (2001).

  7. R. L. Luz et al., J. Electrocardiol., 30(suppl.), 176 (1997).

    Google Scholar 

  8. L. M. Makarov, S. N. Chuprova, and I. I. Kiseleva, Kardiologiya, No. 5, 71 (2004).

  9. L. I. Titomir and I. Ruttkai-Nedetskii, Analysis of Orthogonal Electrocardiograms [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  10. O. V. Baum, V. I. Voloshin, and L. A. Popov, Biofizika, 51, No. 6, 1069 (2006).

    Google Scholar 

  11. O. V. Baum et al., Izmer. Tekh., No. 6, 60 (2001); O. V. Baum et al., Measur. Techniq., 44, No. 6, 651 (2001).

  12. O. V. Baum et al., Proc. XIX Intern. Congr. Electrocard., Lissboa (1992), p. 40.

  13. O. V. Baum, V. I. Voloshin, and L. A. Popov, Kardiovaskulyarnaya Terapiya i Profilaktika, 4, No. 4, 35 (2005).

    Google Scholar 

  14. J. A. Kors and G. van Herpen, Heart, 80, 453 (1998).

    Google Scholar 

  15. D. Di Bernardo, P. Langley, and A. Murray, Pacing Clin. Electrophysiol., 23, No. 9, 1392 (2000).

    Article  Google Scholar 

  16. K. W. Lee et al., J. Cardiol., 87, 148 (2001).

    Article  Google Scholar 

  17. C. Antzelewitch et al., J. Electrocardiol., 31(suppl.), 168 (1998).

    Article  Google Scholar 

  18. K. W. Lee et al., ibid., 128.

    Article  Google Scholar 

  19. N. B. McLaughlin, R. W. F. Campbell, and A. Murray, Br. Heart J., 74, 84 (1995).

    Google Scholar 

  20. Q. Xue and S. Reddy, J. Electrocardiol., 30(suppl.), 181 (1998).

    Article  Google Scholar 

  21. O. V. Baum et al., Vestnik Aritmologii, 20, 6 (2000).

    Google Scholar 

  22. O. V. Baum et al., Izmer. Tekh., No. 11, 63 (1994); O. V. Baum et al., Measur. Techniq., 37, No. 11, 1313 (1994).

  23. A. Murray et al., Br. Heart J., 71, 386 (1994).

    Google Scholar 

  24. J. Kautzner et al., PACE, 17, 928 (1994).

    Google Scholar 

  25. O. V. Baum, Proc. III Intern. Biophys. Congr., Cambridge, USA (1969), p. 157.

  26. O. V. Baum and E. D. Dubrovin, Biofizika, 16, No. 5, 898 (1971).

    Google Scholar 

  27. K. V. Nelson and D. V. Gezelovits (eds.), Theoretical Principles of Electrocardiology [in Russian], Meditsina, Moscow (1979).

    Google Scholar 

  28. L. H. Krohn, Bull. Math. Biophys., 24, No. 3, 277 (1962).

    Article  Google Scholar 

  29. D. B. Geselowitz, Biomed. Sci. Instrum., No. 1, 325 (1963).

  30. R. C. Barr et al., IEEE Trans. Biomed. Eng., BME-13, No. 2, 88 (1966).

    MathSciNet  Google Scholar 

  31. R. Plonsey, Bioelectric Phenomena, McGraw-Hill B. C., New York (1969).

    Google Scholar 

  32. L. I. Titomir and P. Kneppo, Mathematical Modeling of the Bioelectric Heart Generator [in Russian], Nauka, Moscow (1999).

    Google Scholar 

  33. O. V. Baum, Modeling of the Cardiac Electric Field (Summaries of the Intern. Conf.), SAV, Bratislava (1976), p. 18.

    Google Scholar 

  34. O. V. Baum, New Trends in Electrocardiology, Z. L. Dolobjan (ed.), AAS, Yerevan (1973), p. 152.

    Google Scholar 

  35. O. V. Baum, Electrocardiology’98 (edited by I. Preda), World Scientific, Singapore etc. (1999), p. 47.

    Google Scholar 

  36. O. V. Baum, Biophysics of Complicated Systems and Radiation Damage, G. M. Frank (ed.) [in Russian], Nauka, Moscow (1977), p. 119.

    Google Scholar 

  37. R. P. Holland and M. F. Arnsdorf, Progress in Cardiovasc. Dis., 19, 431 (1977).

    Article  Google Scholar 

  38. I. E. Tamm, Principles of Electrical Theory [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  39. O. V. Baum et al., Biological Motility (Intern. Symp.), ONTI PNTs RAN, Pushchino (2004), p. 114.

    Google Scholar 

  40. O. V. Baum, L. A. Popov, and V. I. Voloshin, Electrocardiology’2001, Carlos A. Pastore (ed.), Atheneu, Sao-Paulo et al. (2002), p. 415.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Izmeritel’naya Tekhnika, No. 2, pp. 68–73, February, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baum, O.V., Popov, L.A. & Voloshin, V.I. Dispersion of electrocardiogram QT interval. Part 1. Informative parameter or measurement error?. Meas Tech 50, 205–211 (2007). https://doi.org/10.1007/s11018-007-0048-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-007-0048-9

Key words

Navigation