Skip to main content
Log in

Artificial Intelligence and Machine Learning In Metallurgy. Part 2. Application Examples

  • Published:
Metallurgist Aims and scope

The paper offers a detailed description of the application and significance of machine learning methods during various processing stages of modern metallurgy. The relevance of this topic is based on the significant positive technical and economic effects from the use of machine learning noted by both Russian and world-leading manufacturers in the field of metallurgy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. A. V. Muntin, P. Yu. Zhikharev, A. G. Ziniagin, and D. A. Brayko, “Artificial intelligence and machine learning in metallurgy. Part 1. Methods and algorithms,” Metallurgist, 6, 124–130 (2023).

    Article  Google Scholar 

  2. F. Yu, Y. Suo, X. Zang, et al., “Data mining in blast furnace smelting parameter,” Applied Mechanics and Materials, 303–306, 1093–1096 (2013).

    Google Scholar 

  3. Bjork, Holopainen, Wikstron, et al., “Analysis of blast furnace time series data with ANFIS,” Turku Center for Computer Science [TUCS], 10 (2013).

  4. J. Jong-Hag, “Data mining application of six-sigma project,” in: POSCO, Pohang South Korea, SUGI 29 Solutions, pp. 186–29.

  5. M. Kommenda, G. Kronberger, C. Feilmayr, et al., “Application of symbolic regression on blast furnace and temper mill datasets,” in: EUROCAST 2011: Computer Aided Systems Theory, pp. 400–407; https://doi.org/10.1007/978-3-642-27549-4_51.

  6. M. Wauters, V. Tusset, J. Knevels, et al., “New sampling and analysis method for dynamic end-point control at BOF process,” Metallurgical Analysis, 26, 8–15 (2006).

    Google Scholar 

  7. R. Meilland, M. Wauters, J. Knevels, et al., “Dynamic end-point control in BOF through a fast and simultaneous determination of the steel/slag composition,” Revue De Métallurgie, 103, No. 9, 374–380 (2006).

    Article  Google Scholar 

  8. J. Maiolo and D. Zuliani, “BOF end-point prediction,” Metal Producing and Processing, 46, No. 6, 15–18 (2008).

    Google Scholar 

  9. S. Aki, R. Jari, L. Jarmo, et al., “Data-driven multivariate analysis of basic oxygen furnace used in steel industry,” IFACPapersOnLine, 48–17, 177–182 (2015).

    Google Scholar 

  10. M. Kanemot, H. Yamane, T. Yoshida, et al., “An application of expert system to LD converter process,” ISIJ Int., 30, No. 2, 128–135 (1990).

    Article  Google Scholar 

  11. G. Carayannis, “Artificial intelligence and expert systems in the steel industry,” JOM, 45, No. 10, 43–51 (1993).

    Article  CAS  Google Scholar 

  12. T. Takawa, K. Katayama, and M. Hoteiya, “Development of a mathematical model of end point control system for top and bottom blowing process in BOF,” Tetsu-to-Hagane, 73, No. 7, 836–843 (2009).

    Article  Google Scholar 

  13. H. Fei, X. Chai, and Z. Zhu, “Prediction of oxygen-blowing volume in BOF steelmaking process based on BP neural network and incremental learning,” High Temperature Materials and Processes, 41, 403–416 (2022).

    Article  CAS  Google Scholar 

  14. X. Z. Wang and M. Han, “Causality-based CBR model for static control of converter steelmaking,” Journal Iron and Steel Research, 51, No. 4, 593–598 (2011).

    CAS  Google Scholar 

  15. H. Zhao, X. M. Yi, H. J. Wang, et al., “Prediction model research of oxygen consumption in BOF,” Computer Simulation, 34, No. 1, 380–383 (2017).

    Google Scholar 

  16. C. Gao, M. G. Shen, X. P. Liu, et al., “End-point static control of basic oxygen furnace (BOF) steelmaking based on wavelet transform weighted twin support vector regression,” Complexity, 2019, No. 6, Article ID 7408725 (2019).

  17. A. L. Li, D. Z. Zhao, Z. B. Guo, et al., “Prediction of converter oxygen consumption in improved deep belief network,” China Measurement & Test, 46, No. 6, 1–6 (2020).

    Google Scholar 

  18. S.-L. Jiang, X. Shen, and Z. Zheng, “Gaussian process-based hybrid model for predicting oxygen consumption in the converter steelmaking process,” Processes, 7, No. 6, 352 (2019)https://doi.org/10.3390/pr7060352

  19. I. J. Cox, R. W. Lewis, R. S. Ransing, et al., “Application of neural computing in basic oxygen steelmaking,” J. Materials Processing Technology, 120, No. 1, 310–315 (2002).

    Article  CAS  Google Scholar 

  20. A. M. F. Fileti, T. A. Pacianotto, and A. P. Cunha, “Neural modeling helps the BOS process to achieve aimed end-point conditions in liquid steel,” Eng. App. Artificial Intelligence, 19, No. 1, 9–17 (2006).

    Article  Google Scholar 

  21. N. Rajesh, M. R. Khare, and S. K. Pabi, “Feed forward neural network for prediction of end blow oxygen in LD converter steel making,” Materials Research, 13, No. 1, 15–19 (2010).

    Article  CAS  Google Scholar 

  22. M. Han, Y. Li, and Z. J. Cao, “Hybrid intelligent control of BOF oxygen volume and coolant addition,” Neurocomputing, 123, 415–423 (2014).

    Article  Google Scholar 

  23. R. A. Karelova, “Possibilities of an artificial neural network use to control oxygen consumption in a converter shop,” IOP Conf. Ser. Mat. Sc. and Eng., 966, 012129 (2020); https://doi.org/10.1088/1757-899X/966/1/012129.

  24. I. Grešovnik, T. Kodelja, R. Vertnik, et al., “Application of artificial neural networks to improve steel production process,” in: Proc. of the IASTED Intern. Conf. Art. Intel. and Soft Comp. (ASC 2012), June 25–27, Napoli, Italy.

  25. Z. Sterjovski, D. Nolan, K. R. Carpenter, et al., “Artificial neural networks for modelling the mechanical properties of steels in various applications,” J. Mater. Process. Technol., 170, 536–544 (2005).

    Article  CAS  Google Scholar 

  26. M. Brezocnik and U. Župerl, “Optimization of the continuous casting process of hypoeutectoid steel grades using multiple linear regression and genetic programming – an industrial study,” Metals, 11, 972 (2021).

    Article  CAS  Google Scholar 

  27. P. J. García, V. M. González, J. C. Álvarez, et al., “A new predictive model of centerline segregation in continuous cast steel slabs by using multivariate adaptive regression splines approach,” Materials, 8, 3562–3583 (2015).

    Article  Google Scholar 

  28. P. García, E. García, J. Álvarez, et al., “A comparison of several machine learning techniques for the centerline segregation prediction in continuous cast steel slabs and evaluation of its performance,” J. Comput. Appl. Math., 330, 877–895 (2018).

    Article  Google Scholar 

  29. A. S. Normanton, B. Barber, A. Bell, et al., “Developments in online surface and internal quality forecasting of continuously cast semis,” Ironmak. Steelmak., 31, 376–382 (2004).

    Article  CAS  Google Scholar 

  30. H. Z. Chen, J. P. Yang, X. C. Lu, et al., “Quality prediction of the continuous casting bloom based on the extreme learning machine,” Chin. J. Eng., 40, 815–821 (2018).

    Google Scholar 

  31. L. Leilei, Z. Jiangshan, L. Qing, et al., “Prediction of central carbon segregation in continuous casting billet using a regularized extreme learning machine model,” Metals, 9, 1312 (2019); https://doi.org/10.3390/MET9121312.

  32. K. Thakkar, S. S. Ambekar, and M. Hudnurkar, “Prediction of longitudinal facial crack in steel thin slabs funnel mold using different machine learning algorithms,” Intern. J. Innovation Science, 13, No. 1, 67–86 (2020); https://doi.org/10.1108/IJIS-09-2020-0172.

    Article  Google Scholar 

  33. Y. Liu, T. Zhao, W. Ju, et al., “Materials discovery and design using machine learning,” J. Mater., 3, 159-177 (2017).

    Google Scholar 

  34. C. Shen, C. Wang, X. Wei, et al., “Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel,” Acta Mater., 179, 201–214 (2019).

    Article  CAS  Google Scholar 

  35. J. Majta, R. Kuziak, M. Pietrzyk, et al., “Use of the computer simulation to predict mechanical properties of C–Mn steel, after thermomechanical processing,” J. Mater. Process. Technol., 60, 581–588 (1996).

    Article  Google Scholar 

  36. H. N. Han, C. G. Lee, C.-S. Oh, et al., “A model for deformation behavior and mechanically induced martensitic transformation of metastable austenitic steel,” Acta Mater., 52, 5203–5214 (2004).

    Article  CAS  Google Scholar 

  37. H. N. Han, J. K. Lee, H. J. Kim, et al., “A model for deformation, temperature and phase transformation behavior of steels on runout table in hot strip mill,” J. Mater. Process. Technol., 128, 216–225 (2002).

    Article  CAS  Google Scholar 

  38. E. Evin, J. Kepič, K. Buriková, et al., “The prediction of the mechanical properties for dual-phase high strength steel grades based on microstructure characteristics,” Metals, 8, 242 (2018).

    Article  Google Scholar 

  39. C. Şimşir and C. H. Gür, “An FEM based framework for simulation of thermal treatments: application to steel quenching,” Comput. Mater. Sci., 44, 588–600 (2008).

    Article  Google Scholar 

  40. A. Powar and P. Date, “Modeling of microstructure and mechanical properties of heat treated components by using artificial neural network,” Mater. Sci. Eng. A, 628, 89–97 (2015).

    Article  CAS  Google Scholar 

  41. T. Jia, Z. Liu, H. Hu, et al., “The optimal design for the production of hot rolled strip with 'tight oxide scale’ by using multiobjective optimization,” ISIJ Int., 51, 1468–1473 (2011).

    Article  CAS  Google Scholar 

  42. M. S. Ozerdem and S. Kolukisa, “Artificial neural network approach to predict the mechanical properties of Cu–Sn–Pb–Zn–Ni cast alloys,” Mater. Des., 30, 764–769 (2009).

    Article  CAS  Google Scholar 

  43. Z. Sterjovski, D. Nolan, K. R. Carpenter, et al., “Artificial neural networks for modelling the mechanical properties of steels in various applications,” J. Mater. Process. Technol., 170, 536–544 (2005).

    Article  CAS  Google Scholar 

  44. R.-C. Hwang, Y.-J. Chen, and H.-C. Huang, “Artificial intelligent analyzer for mechanical properties of rolled steel bar by using neural networks,” Expert Syst. Appl., 37, 3136–3139 (2010).

    Article  Google Scholar 

  45. S. Lalam, P. K. Tiwari, S. Sahoo, et al., “Online prediction and monitoring of mechanical properties of industrial galvanised steel coils using neural networks,” Ironmak. Steelmak., 1–8 (2017).

  46. S. B. Singh, H. K. D. H. Bhadeshia, D. J. C. Mackay, et al., “Neural network analysis of steel plate processing,” Ironmak. Steelmak., 25, 355–365 (1998).

    CAS  Google Scholar 

  47. F. Pettersson, N. Chakraborti, and S. B. Singh, “Neural networks analysis of steel plate processing augmented by multi-objective genetic algorithms,” Steel Res. Int., 78, 890–898 (2007).

    Article  CAS  Google Scholar 

  48. F. Pettersson, N. Chakraborti, and H. Saxén, “A genetic algorithms based multi-objective neural net applied to noisy blast furnace data,” Appl. Soft Comput., 7, 387–397 (2007).

    Article  Google Scholar 

  49. B. K. Giri, F. S. Pettersson, H. Saxén, et al., “Genetic programming evolved through bi-objective genetic algorithms applied to a blast furnace,” Mater. Manuf. Processes, 28, 776–782 (2013).

    Article  CAS  Google Scholar 

  50. B. Debanjana, P. P. Ranjan, D. P. Kumar, et al., “Datadriven biobjective genetic algorithms evonn applied to optimize dephosphorization process during secondary steel making operation for producing LPG (liquid petroleum gas cylinder) grade of steel,” Steel Res. Int., 89, 1800095 (2018).

    Article  Google Scholar 

  51. S. Pal and C. Halder, “Optimization of phosphorous in steel produced by basic oxygen steel making process using multi-objective evolutionary and genetic algorithms,” Steel Res. Int., 88, 1600193 (2017).

    Article  Google Scholar 

  52. T. Chugh, N. Chakraborti, K. Sindhya, et al., “A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem,” Mater. Manuf. Processes, 32, 1172–1178 (2017).

    Article  CAS  Google Scholar 

  53. B. K. Mahanta and N. Chakraborti, “Evolutionary data driven modeling and multi objective optimization of noisy data set in blast furnace iron making process,” Steel Res. Int., 89, 1800121 (2018).

    Article  Google Scholar 

  54. H. Peters, A. Ebel, M. Holzknecht, et al., “Industrial data mining in steel industry,” Journees Siderurgiques Internationales, 7, 53–68 (2012).

    Google Scholar 

  55. W. N. L. Browne, “The development of an industrial learning classifier system for data-mining in a steel hot strip mill,” Appl. Learning Classifier Systems, 150, 223–259 (2004).

    Article  Google Scholar 

  56. A. Agrawal, P. D. Deshpande, A. Cecen, et al., “Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters,” Integrating Mater. Manuf. Innovation, 3, 90–108 (2014).

    Article  Google Scholar 

  57. R. Jha, N. Chakraborti, D. R. Diercks, et al., “Optimal mean radius and volume fraction of the nanocrystalline phase in softmagnetic alloys: a combined machine learning and calphad approach,” Comput. Mater. Sci., 150, 202–211 (2018).

    Article  CAS  Google Scholar 

  58. S. Guo, J. Yu, X. Liu, et al., “A predicting model for properties of steel using the industrial big data based on machine learning,” Computational Mater. Sci., 160, 95–104 (2019); https://doi.org/10.1016/J.COMMATSCI.2018.12.056.

  59. Q. Xie, M. Suvarna, J. Li, et al., “Online prediction of mechanical properties of hot rolled steel plate using machine learning,” Materials and Design, 197, 109201 (2021); https://doi.org/10.1016/J.MATDES.2020.109201.

  60. J. Takalo-Mattila, M. Heiskanen, V. Kyllönen, et al., Explainable Steel Quality Prediction System Based on Gradient Boosting Decision Trees, IEEE Access, 10, 68099-68110 (2022); https://doi.org/10.1109/ACCESS.2022.3185607.

  61. D. Lieber, M. Stolpe, B. Konrad, et al., “Quality Prediction in Interlinked Manufacturing Processes based on Supervised & Unsupervised Machine Learning,” Procedia CIRP, 7, 193–198 (2013); https://doi.org/10.1016/J.PROCIR.2013.05.033.

  62. M. Chu, J. Zhao, X. Liu, et al., “Multi-class classification for steel surface defects based on machine learning with quantile hyperspheres,” Chemometrics and Intelligent Laboratory Systems, 168, 15–27 (2017); https://doi.org/10.1016/J.CHEMOLAB.2017.07.008.

  63. M. V. Carneiro, T. T. Salis, G. M. Almeida, et al., “Prediction of Mechanical Properties of Steel Tubes Using a Machine Learning Approach,” J. Mat. Engineering and Performance, 30, No. 1, 434 (2021); https://doi.org/10.1007/S11665-020-05345-0.

  64. T. B. Tavares, F. P. Finamor, J. C. de S. Zorzi, et al., “Mechanical properties prediction of dual phase steels using machine learning,” Tecnol. Metal Mater. Min., 19, e2595 (2022); https://doi.org/10.4322/2176-1523.20222595.

  65. G. X. Liu, L. N. Jia, B. Kong, et al., “Artificial neural network application to microstructure design of Nb–Si alloy to improve ultimate tensile strength,” Mater. Sci. Eng. A, 707, 452–458 (2017).

    Article  CAS  Google Scholar 

  66. X. Y. Sui and Z. M. Lv, “Prediction of the mechanical properties of hot rolling products by using attribute reduction ELM,” Int. J. Adv. Manuf. Technol., 85, No. 5, 1395–1403 (2016).

    Article  Google Scholar 

  67. L. Ciripova, E. Hryha, E. Dudrova, et al., “Prediction of mechanical properties of Fe–Cr–Mo sintered steel in relationship with microstructure,” Mater. Des., 35, 619–625 (2012).

    Article  CAS  Google Scholar 

  68. C. Z. Zhang, B. M. Gong, C. Y. Deng, et al., “Computational prediction of mechanical properties of a C–Mn weld metal based on the microstructures and micromechanical properties,” Mater. Sci. Eng. A, 685, 310–316 (2017).

    Article  CAS  Google Scholar 

  69. A. Kumar, D. Chakrabarti, and N. Chakraborti, “Datadriven pareto optimization for microalloyed steels using genetic algorithms,” Steel Res. Int., 83, No. 2, 169-174 (2012).

    Article  CAS  Google Scholar 

  70. R. Jha, F. Pettersson, G. S. Dulikravich, et al., “Evolutionary design of Nickel-based superalloys using datadriven genetic algorithms and related strategies,” Mater. Manuf. Process., 30, No. 4, 488–510 (2015).

    Article  CAS  Google Scholar 

  71. S. Ganguly, S. Datta, and N. Chakraborti, “Genetic algorithms in optimization of strength and ductility of low-carbon steels,” Mater. Manuf. Process., 22, No. 5, 650–658 (2007).

    Article  CAS  Google Scholar 

  72. G. X. Liu, L. N. Jia, B. Kong, et al., “Artificial neural network application to study quantitative relationship between silicide and fracture toughness of Nb–Si alloys,” Mater. Des., 129, 210–218 (2017).

    Article  CAS  Google Scholar 

  73. A. Liu, P. Li, W. Sun, et al., “Prediction of mechanical properties of micro-alloyed steels via neural networks learned by water wave optimization,” Neural Computing and Applications, 32, 5583–5598 (2020); https://doi.org/10.1007/s00521-019-04149-1.

  74. Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society of Metals (1977).

  75. J. Trzaska and L. A. Dobrzański, “Modelling of CCT diagrams for engineering and constructional steels,” J. Mater. Process. Technol., 192, 504–510 (2007).

    Article  Google Scholar 

  76. Y. Wei, X. U. Wei-hong, L. Ya-xiu, et al., “Effect of chromium on CCT diagrams of novel air-cooled bainite steels analyzed by neural network,” J. Iron. Steel Res. Int., 14, 39-42 (2007).

    Article  Google Scholar 

  77. S. Chakraborty, P. P. Chattopadhyay, S. K. Ghosh, et al., “Incorporation of prior knowledge in neural network model for continuous cooling of steel using genetic algorithm,” Appl. Soft Comput., 58, 297–306 (2017).

    Article  Google Scholar 

  78. X. Geng, H. Wang, W. Xue, et al., “Modeling of CCT diagrams for tool steels using different machine learning techniques,” Computational Mater. Sci., 171, 109235 (2020).

    Article  CAS  Google Scholar 

  79. S. K. Ghosh, P. P. Chattopadhyay, A. Haldar, et al., “Design of the directly air-cooled pearlite-free multiphase steel from CCT diagrams developed using ANN and dilatometric methods,” ISIJ Int., 48, No. 5, 649–657 (2008).

    Article  CAS  Google Scholar 

  80. Z.-L. Wang, T. Ogawa, and Y. Adachi, “Properties-to-microstructure-to-processing inverse analysis for steels via machine learning,” ISIJ Int., 59, No. 9, 1691–1694 (2019).

    Article  CAS  Google Scholar 

  81. L. Shen, X. Zhai, C. Chen, et al., “A preliminary study on the CLAM steel composition optimization based on extreme learning machine,” J. Fusion Energy, 34, No. 5, 1071–1076 (2015); https://doi.org/10.1007/S10894-015-9912-9.

    Article  CAS  Google Scholar 

  82. Z. Zhu, Y. Liang, and J. Zou, “Modeling and composition design of low-alloy steel’s mechanical properties based on neural networks and genetic algorithms,” Materials, 13, No. 23, 1–23 (2020).

    Article  Google Scholar 

  83. V. Colla, S. Cateni, A. Maddaloni, et al., “A modular machine-learning-based approach to improve tensile properties uniformity along hot dip galvanized steel strips for automotive applications,” Metals, 10, No. 7, 1–23 (2020).

    Article  Google Scholar 

  84. M. Vannucci and V. Colla1, “Automatic steel grades design for Jominy profile achievement through neural networks and genetic algorithms,” Neural Computing and Applications, 33, 16451–16470 (2021); https://doi.org/10.1007/S00521-021-06242-W.

  85. X. Peng, “Innovation practice and future prospect of blast furnace ironmaking technology,” Iron Steel, 56, 10–14 (2021); https://doi.org/10.13228/j.boyuan.issn0449-749x.20200541.

  86. B. Nenchev, C. Panwisawas, X. Yang, et al., “Metallurgical data science for steel industry: a case study on basic oxygen furnace,” Steel Res. Int., 2100813, 1–11 (2022).

    Google Scholar 

  87. M. Zhang, Y. Chen, L. Xu, et al., “A novel optic sensor for real-time metal analysis in the bof steelmaking process,” Advanced Materials Research, 156–157, 1594–1597 (2011).

    Google Scholar 

  88. M. Zhang, Y. Chen, L. Xu, et al., “New optic sensor for real-time bath temperature measurement in a BOF,” Advanced Materials Research, 181–182, 642–646 (2011).

    Google Scholar 

  89. J. Brandenburger, V. Colla, G. Nastasi, et al., “Big data solution for quality monitoring and improvement on flat steel production,” IFAC-PapersOnLine, 49–20, 55–60 (2016).

    Article  Google Scholar 

  90. S. Gellrich, M.-A. Filz, A.-S. Wilde, et al., “Deep transfer learning for improved product quality prediction: A case study of aluminum gravity die casting,” Procedia CIRP, 104, 912–917 (2021).

    Article  Google Scholar 

  91. C. Hartmann, D. Opritescu, and W. Volk, “An artificial neural network approach for tool path generation in incremental sheet metal free-forming,” J. Intell. Manuf., 30, No. 2, 757–770 (2019); https://doi.org/10.1007/S10845-016-1279-X.

    Article  Google Scholar 

  92. A. Kazama, K. Kawamura, K. Tsuda, et al., “Development of utilization of digital data in JFE steel,” JFE Technical Report, No. 26, 8 (2021).

    Google Scholar 

  93. J. Krumeich, J. Schimmelpfennig, and S. Jacobi, “Advanced planning and control of manufacturing processes in steel industry through big data analytics,” in: Proc. of the IEEE Intern. Conf. on Big Data (2014), pp. 16–24.

  94. S. M. Zanoli, C. Pepe, E. Moscoloni, et al., “Data analysis and modelling of billets features in steel industry,” Sensors, 22, No. 7333, 1–20 (2022).

    Google Scholar 

  95. Z. Yuan, Q. Ye, Y. Wang, et al., “Temperature measurement of metal surface at normal temperatures by visible images and machine learning,” in: IEEE Transactions on Instrumentation and Measurement, 70, 1–16, Art No. 2514516 (2021); https://doi.org/10.1109/TIM.2021.3112003.

  96. G. Verbanac, L. Cestari, G. Costante, et al., “Application of Machine learning for defective coils prediction,” in: AISTech 2020 – Proc. of the Iron & Steel Techn. Confer. (2020), p. 1927; https://doi.org/10.33313/380/208.

  97. A. Stoianova and N. Vasilyeva, “Production process data as a tool for digital transformation of metallurgical companies,” in: Proc. of the 14th Intern. Sci. Conf. “INTERAGROMASH 2021” (2021), pp. 780–787.

  98. F. Abbassi, T. Belhadj, S. Mistou, et al., “Parameter identification of a mechanical ductile damage using artificial neural networks in sheet metal forming,” Materials and Design, 45, 605–615 (2013).

    Article  Google Scholar 

  99. M. Bartolomei, A. Kliuev, A. Rogozhnikov, et al., “Classification of the type of hardened steel destruction using a deep learn neural network,” in: DSIC 2019, AISC 1114 (2020), pp. 513–521.

  100. A. Panda, R. Naskar, and S. Pal, “Deep learning approach for segmentation of plain carbon steel microstructure images,” IET Image Processing, 13, No. 9, 1516–1524 (2019).

    Article  Google Scholar 

  101. L. Xiong, J. Ning, and Y. Dong, “Pollution reduction effect of the digital transformation of heavy metal enterprises under the agglomeration effect,” J. Cleaner Production, 330, 129864 (2022).

    Article  CAS  Google Scholar 

  102. A. V. Muntin, M. N. Shamshin, A. G. Zinyagin, et al., “Digitalization is most important tool for improving metallurgical technologies,” Metallurgist, No. 9, 31–43 (2022).

    Article  Google Scholar 

  103. A. E. Sevidov, A. V. Muntin, and A. G. Kolesnikov, “Modeling of mechanical wear of work rolls in a wide-strip hot rolling mill using machine learning methods,” Chernye Metally, No. 11, 22–27 (2022).

    Article  Google Scholar 

  104. A. E. Sevidov, A. V. Muntin, and A. V. Rumyantsev, “Investigation of the friction coefficient in the steady-state process of continuous hot rolling of steel strips under the industrial mill 1950 conditions,” Chernye Metally, No. 9, 29–35 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Yu. Zhikharev.

Additional information

Translated from Metallurg, Vol. 67, No. 10, pp. 99–111, October, 2023. Russian DOIhttps://doi.org/10.52351/00260827_2023_10_99.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhikharev, P.Y., Muntin, A.V., Brayko, D.A. et al. Artificial Intelligence and Machine Learning In Metallurgy. Part 2. Application Examples. Metallurgist 67, 1545–1560 (2024). https://doi.org/10.1007/s11015-024-01648-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-024-01648-y

Keywords

Navigation