Skip to main content
Log in

Efficiency Gains When Using Activated Mill Tailings in Underground Mining

  • Published:
Metallurgist Aims and scope

Global challenges, including increased consumption of mineral raw materials, climatic changes, and the exhaustibility of reserves, increase the relevance of mineral mining problems. In the article, the issue of the comprehensive mining waste utilization is considered. The experimental results confirm the effect caused by the mechanochemical activation of metal-containing geomaterials under high-energy impacts, increasing the recovery of useful components, as considerations concerning the time-spatial flow of non-linear manifestations during goaf formation and the properties of activated binders based on recycled materials in filling mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. B. Kříbek, I. Nyambe, O. Sracek, M. Mihaljevič, and I. Knésl, “Impact of mining and ore processing on soil, drainage and vegetation in the Zambian copperbelt mining districts: a review,” Minerals, 13, Art. N. 384; DOI: https://doi.org/10.3390/min13030384.

  2. M. M. Khairutdinov, P. A. Kaung, Z. Ya. Chzho, and Yu. S. Tyulyaeva, “Providing ecological safety with the introduction of resource-renewing technologies,” Bezopasnost’ Truda v Promyshlennosti, No. 5, 57–62 (2022); DOI: https://doi.org/10.24000/0409-2961-2022-5-57-62.

    Article  CAS  Google Scholar 

  3. L. R. Adrianto, L. Ciacci, S. Pfister, and S. Hellweg, “Toward sustainable reprocessing and valorization of sulfidic copper tailings: Scenarios and prospective LCA,” Science of the Total Environment, 871, Art. No. 162038; DOI: https://doi.org/10.1016/j.scitotenv.2023.162038.

  4. T. N. Aleksandrova, N. M. Litvinova, A. V. Aleksandrov, S. A. Korchevenkov, and R. V. Bogomyakov, “An analysis of noble metal losses and the rational methods of their decrease during the development of alluvial deposits,” Tsvetnye Metally, No. 5 (857), 11–15 (2014).

    Google Scholar 

  5. R. Ricky, S. Shanthakumar, and K. M. Gothandam, “A pilot-scale study of the integrated phycoremediation-photolytic ozonation based municipal solid waste leachate treatment process,” J. of Environmental Management, 323, Art. No. 116237; DOI: https://doi.org/10.1016/j.jenvman.2022.116237.

  6. E. N. Shaforostova, O. V. Kosareva-Volod’ko, O. V. Belyankina, D. Y. Solovykh, E. S. Sazankova, E. I. Sizova, and D. A. Adigamov, “A tailing dump as industrial deposit; study of the mineralogical composition of tailing dump of the Southern Urals and the possibility of tailings re-development,” Resources, 12, 28 (2023); DOI: https://doi.org/10.3390/resources12020028.

  7. M. K. Mensah, C. Drebenstedt, N. Hoth, I. F. Ola, P. U. Okoroafor, and E. D. Wiafe, “Artisanal gold mine spoil types within a common geological area and their variations in contaminant loads and human health risks,” Environmental Monitoring and Assessment, 195(2), Art. No. 312; DOI: https://doi.org/10.1007/s10661-023-10932-4.

  8. D. Stumbea, “Preliminaries on pollution risk factors related to mining and ore processing in the Cu-rich polymetallic belt of Eastern Carpathians, Romania,” Environmental Science and Pollution Research, 20, 7643–7655 (2013); DOI: https://doi.org/10.1007/s11356-013-1656-3.

    Article  CAS  Google Scholar 

  9. M. Saunois, R. B. Jackson, P. Bousquet, B. Poulter, and J. G. Canadell, “The growing role of methane in anthropogenic climate change,” Environmental Research Letters, 11, Art. No. 120207; DOI: https://doi.org/10.1088/1748-9326/11/12/120207.

  10. V. S. Brigida, V. I. Golik, Yu. V. Dmitrak, and O. Z. Gabaraev, “The impact of situational geomechanical conditions influence to improving of the drainage rock-mass caved,” Proceedings of the Tula States University-Sciences of Earth, No. 2, 279–288 (2019); WOS: 000546576800026.

  11. F. S. M. Araujo, I. Taborda-Llano, E. B. Nunes, and R. M. Santos, “Recycling and reuse of mine tailings: A review of advancements and their implications,” Geosciences, 12, Art. No. 319; DOI: https://doi.org/10.3390/geosciences12090319.

  12. M. V. Rylnikova, “Harmonious development of mining industry, science, and higher miming education — the guarantee of the stability of Russian mining regions,” Ustoichivoe Razvitie Gornykh Territorii, 12, No. 1 (43), 154–161 (2020); DOI: https://doi.org/10.21177/1998-4502-2020-12-1-154-161.

    Article  Google Scholar 

  13. C. D. Agor, E. M. Mbadike, and G. U. Alaneme, “Evaluation of sisal fiber and aluminum waste concrete blend for sustainable construction using adaptive neuro-fuzzy inference system,” Scientific Report, 13(1), Art. No. 2814; DOI: https://doi.org/10.1038/s41598-023-30008-0.

  14. R. V. Klyuev, I. I. Bosikov, A. V. Maier, and O. A. Gavrina, “Comprehensive analysis of using effective technologies to improve the sustainable development of the natural and technical system,” Ustoichivoe Razvitie Gornykh Territorii, No. 2, 283–290 (2020); DOI: https://doi.org/10.21177/1998-45022020-12-2-283-290.

    Article  Google Scholar 

  15. J. Rybak, M. M. Khairutdinov, Ch. B. Kongar-Syuryun, and Yu. S. Tyulyaeva, “Resource-saving technologies for the development of mineral deposits,” Ustoichivoe Razvitie Gornykh Territorii, 13, No. 3(49), 405–415 (2021); DOI: https://doi.org/10.21177/1998-4502-2021-13-3-406-415.

    Article  Google Scholar 

  16. N. J. Adero, C. Drebenstedt, E. N. Prokofeva, and A. V. Vostrikov, “Spatial data and technologies for geomonitoring of land use under aspect of mineral resource sector development,” Eurasian Mining, No. 1, 69–74 (2020); DOI: https://doi.org/10.17580/em.2020.01.14.

    Article  Google Scholar 

  17. B. Pradhan, R. Jena, D. Talukdar, M. Mohanty, B. K. Sahu, A. K. Raul, and K. N. Abdul Maulud, “A new method to evaluate gold mineralisation-potential mapping using deep learning and an explainable artificial intelligence (Xai) model,” Remote Sensing, 14, Art. No. 4486; DOI: https://doi.org/10.3390/rs14184486.

  18. V. Litvinenko, I. Bowbrick, I. Naumov, and Z. Zaitseva, “Global guidelines and requirements for professional competencies of natural resource extraction engineers: Implications for ESG principles and sustainable development goals,” Journal of Cleaner Production, 338, Art. No. 130530; DOI: https://doi.org/10.1016/j.jclepro.2022.130530.

  19. M. V. Griazev, N. M. Kachurin, and V. I. Spirin, “Energy efficiency technologies of integrated coal and mining waste development in the Moscow coal basin in the context of secure and sustainable supply of raw materials in Central Russia,” Eurasian Mining, 2, 15–19 (2016); DOI: https://doi.org/10.17580/em.2016.02.04.

    Article  Google Scholar 

  20. T. N. Aleksandrova, A. V. Aleksandrov, N. V. Nikolaeva, and A. O. Romashev, “Noble and rare metals in caustobilites and prospects for their extraction,” Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, No. 6, 189–197 (2015).

    Google Scholar 

  21. A. J. Whitworth, J. Vaughan, G. Southam, A. Van der Ent, P. N. Nkrumah, X. Ma, and A. Parbhakar-Fox, “Review on metal extraction technologies suitable for critical metal recovery from mining and processing wastes,” Minerals Engineering, 1, Art. No. 107537; DOI: https://doi.org/10.1016/j.mineng.2022.107537.

  22. V. I. Komashchenko, E. D. Vorob’ev, and Yu. I. Razorenov, “Concepts of metal recovery during the ore concentration waste disposal,” Izv. Tomskogo Politekhnicheskogo Un-ta. Inzhiniring Georesursov, 328(10), 18–24 (2017); URL: http://earchive.tpu.ru/handle/11683/43364.

  23. V. I. Golik, A. N. Doolin, M. A. Komissarova, and R. A. Doolin, “Evaluating the effectiveness of utilization of mining waste,” Intern. EUR Business Management, 9, No. 6, 1119–1123 (2015).

    Google Scholar 

  24. G. Chen, J. Chen, and J. Peng, “Effect of mechanical activation on structural and microwave absorbing characteristics of high titanium slag,” Powder Technology, 286, 218–222 (2015); DOI: https://doi.org/10.1016/j.powtec.2015.08.021.

    Article  CAS  Google Scholar 

  25. U. Kologrieva, A. Volkov, D. Zinoveev, I. Krasnyanskaya, P. Stulov, and D. Wainstein, “Investigation of vanadium containing sludge oxidation roasting process for vanadium extraction,” Metals, 11, Art. No. 100; DOI: https://doi.org/10.3390/met11010100.

  26. I. M. Gembitskaya and M. V. Gvozdetskaya, “Transformation of technological raw material grains during the production of fine powders,” Zapiski Gornogo Instituta, 249, 401–407 (2021); DOI: https://doi.org/10.31897/PMI.2021.3.9.

    Article  Google Scholar 

  27. T. S. Yusupov, E. A. Kirillova, L. G. Shumskaya, V. P. Isupov, and N. Z. Lyakhov, “Improvement of flotation concentration of copper-nickel ores on the basis of selective destruction of mineral intergrowths by high-energy impact effects,” Khimiya v Interesakh Ustoichivogo Razvitiya, 4, 457–464 (2017); DOI: https://doi.org/10.15372/CSD20170413.

    Article  Google Scholar 

  28. O. V. Yushkova, A. S. Yasinskiy, P. V. Polyakov, and V. V. Yushkov, “Use of mechanical activation to improve the performance of anode cover material,” Tsvetnye Metally, 1(925), Art. No. 5459; DOI: https://doi.org/10.17580/tsm.2020.01.08.

  29. V. I. Golik, Yu. V. Dmitrak, V. I. Komashchenko, and Yu. I. Razorenov, “Ecological aspects of storing ore concentration tailings in a mountainous region,” Ekologiya i Promyshlennost’ Rossii, 22, No. 6, 35–39 (2018); DOI: https://doi.org/10.18412/1816-03952018-6-35-39.

    Article  Google Scholar 

  30. G. Tiu, Y. Ghorbani, N. Jansson, C. Wanhainen, and N.-J. Bolin, “Ore mineral characteristics as rate-limiting factors in sphalerite flotation: Comparison of the mineral chemistry (iron and manganese content), grain size, and liberation,” Minerals Engineering, 185, Art. No. 107705; DOI: https://doi.org/10.1016/j.mineng.2022.107705.

  31. T. I. Yushina, I. O. Krylov, V. S. Valavin, and V. V. Toan, “Old iron-bearing waste treatment technology,” Eurasian Mining, No. 1, 16–21 (2018); DOI: https://doi.org/10.17580/em.2018.01.04.

    Article  Google Scholar 

  32. A. V. Rasskazova, A. G. Sekisov, M. S. Kirilchuk, and Y. A. Vasyanov, “Stage-activation leaching of oxidized copper-gold ore: Theory and technology,” Eurasian Mining, No. 1, 52–55 (2020); DOI: https://doi.org/10.17580/em.2020.01.10

    Article  Google Scholar 

  33. D. Valeev, A. Shoppert, D. Dogadkin, T. Kuz’mina, and C. Salazar-Concha, “Extraction of Al and rare earth elements via high pressure leaching of boehmite-kaolinite bauxite using NH4HSO4 and H2SO4,” Hydrometallurgy, 215, Art. No. 105994 (2023); DOI: https://doi.org/10.1016/j.hydromet.2022.105994.

  34. V. I. Golik, Yu. V. Dmitrak, and V. S. Brigida, “Impact of duration of mechanochemical activation on enhancement of zinc leaching from polymetallic ore tailings,” Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 47–54 (2020); DOI: https://doi.org/10.33271/NVNGU/2020-5/047.

    Article  Google Scholar 

  35. J. Rybak, A. Adigamov, C. Kongar-Syuryun, M. Khayrutdinov, and Y. Tyulyaeva, “Renewable-resource technologies in mining and metallurgical enterprises providing environmental safety,” Minerals, 11-10, 1145 (2021); DOI: https://doi.org/10.3390/min11101145.

    Article  CAS  Google Scholar 

  36. A. F. Al-Shawabkeh, M. O. Thalji, and T. M. Al-Rousan, “Using recycled plastic waste to improve the performance of hotmix asphalt,” Proc. of Institution of Civil Engineers: Waste and Resource Management (2022); DOI:https://doi.org/10.1680/jwarm.21.00013.

  37. H. Nikhade, R. RL. Birali, K. Ansari, M. A. Khan, H. M. Najm, S. M. Anas, M. Mursaleen, M. A. Hasan, and S. Islam, “Behavior of geomaterial composite using sugar cane bagasse ash under compressive and flexural loading,” Frontiers in Materials, 10, Art. No. 1108717; DOI: https://doi.org/10.3389/fmats.2023.1108717.

  38. D. Valeev and A. Kondratiev, “Current state of coal fly ash utilization: characterization and application,” Materials, 16, 27 (2023); DOI: https://doi.org/10.3390/ma16010027.

    Article  CAS  Google Scholar 

  39. A. Elbendary, T. Aleksandrova, and N. Nikolaeva, “Influence of operating parameters on the flotation of the Khibiny apatitenepheline deposits,” J. of Materials Research and Technology, 8(6), 5080–5090 (2019); DOI: https://doi.org/10.1016/j.jmrt.2019.08.027.

    Article  CAS  Google Scholar 

  40. A. Soleymani, M. A. Najafgholipour, and A. Johari, “An experimental study on the mechanical properties of solid clay brick masonry with traditional mortars,” J. of Building Engineering, 58, Art. No. 105057 (2022); DOI: https://doi.org/10.1016/j.jobe.2022.105057.

  41. N. S. Naveen, P. S. Kishore, S. Pujari, M. D. Silas Kumar, and K. Jogi, “Optimization through Taguchi and Artificial Neural Networks on thermal performance of a radiator using graphene based coolant,” Proc. of the Inst. of Mechanical Engineers A. Part J. of Power and Energy, 236(8), 1680–1693 (2022); DOI: https://doi.org/10.1177/09576509221097476.

  42. S. E. Zhang, G. T. Nwaila, J. E. Bourdeau, Y. Ghorbani, and E. J. M. Carranza, “Machine learning-based delineation of geodomain boundaries: A proof-of-concept study using data from the Witwatersrand Goldfields,” Natural Resources Research, (2023); DOI: https://doi.org/10.1007/s11053-023-10159-7.

    Article  Google Scholar 

  43. V. Khosravi, A. Gholizadeh, P. C. Agyeman, F. D. Ardejani, S. Yousefi, and M. Saberioon, “Further to quantification of content, can reflectance spectroscopy determine the speciation of cobalt and nickel on a mine waste dump surface?,” Science of the Total Environment, 872, Art. No. 161996 (2023); DOI: https://doi.org/10.1016/j.scitotenv.2023.161996.

  44. X. Liu and C. Aldrich, “Assessing the influence of operational variables on process performance in metallurgical plants by use of Shapley value regression,” Metals, 12, Art. No. 1777, (2022); DOI: https://doi.org/10.3390/met12111777.

  45. X. Liu and C. Aldrich, “Explaining anomalies in coal proximity and coal processing data with Shapley and tree-based models,” Fuel, 335, Art. No. 126891 (2023); DOI: https://doi.org/10.1016/j.fuel.2022.126891.

  46. T. Trzepieciński, “Polynomial multiple regression analysis of the lubrication effectiveness of deep drawing quality steel sheets by eco-friendly vegetable oils,” Materials, 15, Art. No. 1151 (2022); DOI: https://doi.org/10.3390/ma15031151.

  47. S. Puchlerska, K. Żaba, J. Pyzik, T. Pieja, and T. Trzepieciński, “Statistical analysis and optimization of data for the design and evaluation of the shear spinning process,” Materials, 14, Art. No. 6099 (2021); DOI: https://doi.org/10.3390/ma14206099.

  48. V. I. Golik, Yu. I. Razorenov, V. S. Brigida, and O. G. Burdzieva, “Mechanochemical technology of metal recovery from mill tailings,” Izv. Tomskogo Politekhnicheskogo Un-ta. Inzhiniring Georesursov, 331(6), 175–183 (2020); DOI: https://doi.org/10.18799/24131830/2020/6/2687.

    Article  Google Scholar 

  49. V. S. Morkun, N. V. Morkun, V. V. Tron’, S. N. Grishchenko, A. I. Suvorov, D. I. Paranyuk, and A. Yu. Serdyuk, “Reduction in the dimensionality of the spatial-temporal models of nonlinear dynamic processes of the ore concentration,” Izv. Tomskogo Politekhnicheskogo Un-ta. Inzhiniring Georesursov, 330(12), 151–167 (2019); DOI: https://doi.org/10.18799/24131830/2019/12/2416.

  50. V. I. Golik, Yu. V. Dmitrak, and V. S. Brigida, “Impact of duration of mechanochemical activation on enhancement of zinc leaching from polymetallic ore tailings,” Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 47–54 (2020); DOI: https://doi.org/10.33271/NVNGU/2020-5/047.

    Article  Google Scholar 

  51. E. Iakovleva, M. Belova, A. Soares, and A. Rassõlkin, “On the issues of spatial modeling of non-standard profiles by the example of electromagnetic emission measurement data,” Sustainability (Switzerland), 14, Art. N. 574 (2022); DOI: https://doi.org/10.3390/su14010574.

  52. S. Palaniandy, “Impact of mechanochemical effect on chalcopyrite leaching,” Intern. J. of Mineral Processing, 136, 56–65 (2015); DOI: https://doi.org/10.1016/j.minpro.2014.10.005.

    Article  CAS  Google Scholar 

  53. M. Minagawa, S. Hisatomi, T. Kato, G. Granata, and Ch. Tokoro, “Enhancement of copper dissolution by mechanochemical activation of copper ores: Correlation between leaching experiments and DEM simulations,” Advanced Powder Technology, 29(3), 471– 478 (2018); DOI: https://doi.org/10.1016/j.apt.2017.11.03.

    Article  CAS  Google Scholar 

  54. H. Basturkcu, M. Achimovičová, M. Kaňuchová, and N. Acarkan, “Mechanochemical pretreatment of lateritic nickel ore with sulfur followed by atmospheric leaching,” Hydrometallurgy, 181, 43–52 (2018); DOI: https://doi.org/10.1016/j.hydromet.2018.08.016.

    Article  CAS  Google Scholar 

  55. G. Bumanisa and D. Bajarea, “Compressive strength of cement mortar affected by sand micro filler obtained with collision milling in disintegrator,” Procedia Engineering, 172, 149–156 (2017); DOI: https://doi.org/10.1016/j.proeng.2017.02.037.

    Article  CAS  Google Scholar 

  56. K. Dvořák, D. Dolák, D. Paloušek, L. Čelko, and D. Jech, “The effect of the wear of rotor pins on grinding efficiency in a highspeed disintegrator,” Materials Sci., 24(1), 29–34 (2018); DOI: https://doi.org/10.5755/j01.ms.24.1.17737.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Brigida.

Additional information

Translated from Metallurg, Vol. 67, No. 3, pp. 108–116, March, 2023. Russian DOI: https://doi.org/10.52351/00260827_2023_03_108.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brigida, V.S., Golik, V.I., Klyuev, R.V. et al. Efficiency Gains When Using Activated Mill Tailings in Underground Mining. Metallurgist 67, 398–408 (2023). https://doi.org/10.1007/s11015-023-01526-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-023-01526-z

Keywords

Navigation