Skip to main content
Log in

Effect of Chemical Composition on the Corrosion Resistance, Microstructure, Hardness and Electrical Conductivity of the Ge–In–Sn Alloys

  • Published:
Metallurgist Aims and scope

This paper presents the results of experimental and analytical testing of the ternary Ge–In–Sn system. Experimental part includes results of the corrosion resistance, microstructure, hardness and electrical properties of the selected ternary Ge–In–Sn alloys. The prepared alloys were tested using X-ray powder diffraction (XRD) method, scanning electron microscopy with energy dispersive spectrometry (SEMEDS), hardness and electrical conductivity tests. For the obtained values of hardness and electrical conductivity, a mathematical model was used in order to determine the properties of the alloy in the entire range of the composition. The results of the Brinell hardness test show that the Ge80In10Sn10 ternary alloy has the highest hardness of all tested ternary alloys, 254.2 MN/m2. While, results of the electrical conductivity test show that the Ge10In10Sn80 ternary alloy has the highest conductivity of all tested ternary alloys and the highest corrosion resistance. Calculated isothermal section at 25°C, were confirmed with XRD and EDS results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  1. S. Raoux, W. Welnic, and D. Lelmini, Chem. Rev., 110, 240–267 (2010).

    Article  CAS  Google Scholar 

  2. E. M. Vinod, R. Naik, R. Ganesan, and K. S. Sangunni, J. Non–Cryst. Solids., 358, 2927–2930 (2012).

    CAS  Google Scholar 

  3. D. Ielmini and A. L. Lacaita, Mater. Today, 14, 600–607 (2011).

    Article  CAS  Google Scholar 

  4. R. Goswami, S. B. Qadri, E. P. Gorzkowski, J. P. Yesinowski, and G. G. Jernigan, Mater Lett., 187, 126–128 (2017).

    Article  CAS  Google Scholar 

  5. J. M. del Pozo and L. Díaz, J. Non-Cryst. Solids, 243, 45–51 (1999).

    Google Scholar 

  6. S. L. Ou, C. P. Cheng, C. Y. Yeh, C. J. Chung, K. S. Kao, and R. C. Lin, Adv. Mater. Res., 189–193, 4430–4433 (2011).

    Article  Google Scholar 

  7. P. Moontragoon, N. Vukmirovic, Z. Ikonic, and P. Harrison, J. Appl. Phys., 103, 1037121–1037128 (2008).

    Article  Google Scholar 

  8. V. Ponnambalam, D. T. Morelli, and A Novel, J. Alloys Compd., 740, 42–46 (2018).

    Article  CAS  Google Scholar 

  9. P. Nemec, V. Nazabal, A. Moreac, J. Gutwirth, L. Benes, and M. Frumar, Mater. Chem. Phys., 136, 935–941 (2012).

    Article  CAS  Google Scholar 

  10. N. Tošković, D. Minić, M. Premović, D. Manasijević, A. Djordjević, and A. Marković, J. Phase Equilib. Diffus., 39, 933–943 (2018).

    Article  Google Scholar 

  11. W. Cao, S. L. Chen, F. Zhang, K. Wu, Y. Yang, Y. A. Chang, R. Schmid–Fetzer, and W. A. Oates, Calphad, 33(2), 328–342 (2009).

    Article  CAS  Google Scholar 

  12. Feutelais, B. Legendre, and S. G. Fries, Calphad, 20(1), 109–123 (1996).

  13. P. Y. Chevalier, Thermochim. Acta, 155, 227–240 (1989).

    Article  CAS  Google Scholar 

  14. B. J. Lee, C. S. Oh, and J. H. Shim, J. Electron. Mater., 25, 983–991 (1966).

    Article  Google Scholar 

  15. N. Moelans, K. C. Hari Kumar, and P. Wollants, J. Alloys Compd., 360, 98–106 (2003).

  16. V. T. Deshpande and D. B. Sirdeshmukh, Acta Crystallogr., 14, 355–356 (1961).

    Article  CAS  Google Scholar 

  17. J. Thewlis and A. R. Davy, Nature, 174, 1011–1011 (1954).

    Article  CAS  Google Scholar 

  18. A. S. Cooper, Acta Crystallogr., 15, 578–582 (1962).

    Article  CAS  Google Scholar 

  19. S. C. Flower and G. A. Saunders, Philosophical Magazine B, 62, 311–328 (1990).

    Article  CAS  Google Scholar 

  20. V. Bhattacharya, K. Chattopadhyay, and J. Nanosci, Nanotechnol., 7, 1736–1742 (2007).

    CAS  Google Scholar 

  21. S. F. Bartram, W. G. Moffatt, and B. W. Roberts, J. Less Common Met., 62, 9–12 (1978).

    Article  CAS  Google Scholar 

  22. M. J. Anderson and P. J. Whitcomb, RSM: Simplified, Optimizing Processes Using Response Surface Methods for Design of Experiments, Second Edition, CRC Press,Taylot & Francis Group (2017).

    Google Scholar 

  23. G. E. P. Box and N. R. Draper, Response Surfaces, Mixtures, and Ridge Analyses, Second Edition, Wiley (2007).

  24. Stat–Ease, Handbook for Experimenters, Version 11. 00, Stat–Ease, Inc. (2018).

  25. D. C. Montgomery, Design and Analysis of Experiments, Ninth Edition, Wiley (2017).

  26. R. H. Myers, D. C. Mongomery, and C. M. Anderson–Cook, Response Surface Methodology, Process and Product Optimization Using Designed Experiments, Fourth Edition, Wiley (2016).

  27. J. Stanić, Metod Inženjerskih Merenja, Mašinski fakultet, V Prerađeno i dopunjeno izdanje, Beograd (1990).

  28. https://en.wikipedia.org/wiki/Analysis_of_variance, access on 07. 08. 2022.

  29. https://learn.financestrategists.com/financeterms/anova/?gclid=Cj0KCQjwxb2XBhDBARIsAOjDZ37Z_zL85FqJzBP0fojQoZJydvTXZKDRlahJqx5MZlA0b3fDkg-V3oaAl6bEALw_wcBl, access on 07. 08. 2022.

  30. G. E. P. Box and D. R. Cox, “An analysis of transformations,” J. Royal Statistical Society. Series B (Methodological), 26(2), 211–252 (1964).

    Article  Google Scholar 

  31. S. Mallick, Z. Ahmad, F. Touati, J. Bhadra, R. A. Shakoor, and N. J. Al–Thani, “PLA–TiO2 nanocomposites: Thermal, morphological, structural, and humidity sensing properties,” Ceram. Int., 44, 16507–16513 (2018).

  32. D. Q Zhang, L. X. Gao, and G. D. Zhou, “Inhibition of copper corrosion in aerated hydrochloric acid solution by heterocyclic compounds containing a mercapto group,” Corros. Sci., 46, 3031–3040 (2004); https://doi.org/10.1016/j.corsci.2004.04.012.

  33. C. C. Li, X. Y. Guo, S. Shen, P. Song, T. Xu, Y. Wen, and H. F. Yang, “Adsorption and corrosion inhibition of phytic acid calcium on the copper surface in 3 wt% NaCl solution,” Corros. Sci., 83, 147–154 (2014).

    Article  CAS  Google Scholar 

  34. A. Popova, S. Raicheva, E. Sokolova, and M. Christov, “Frequency dispersion of the interfacial impedance at mild steel corrosion in acid media in the presence of benzimidazole derivatives,” Langmuir, 12, 2083–2089 (1996); https://doi.org/10.1021/la950148+.

  35. A. Popova, E. Sokolova, S. Raicheva, and M. Christov, “AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives,” Corros. Sci., 45, 33–58 (2003); https://doi.org/10.1016/S0010-938X(02)00072-0.

  36. H. Y. Ma, S. H. Chen, B. S. Yin, S. Y. Zhaom, and X. Q. Liu, Corros. Sci., 45, 867–882 (2003).

    Article  CAS  Google Scholar 

  37. S. Deng, X. Li, and X. Xie, “Hydroxymethyl urea and 1,3–bis(hydroxymethyl) urea as corrosion inhibitors for steel in HCl solution,” Corros. Sci., 80, 276–289 (2014), https://doi.org/10.1016/j.corsci.2013.11.041.

    Article  CAS  Google Scholar 

  38. C. W. Yan, H. C. Lin, and C. N. Cao, “Investigation of inhibition of 2–mercaptobenzoxazole for copper corrosion,” Electrochim. Acta, 45, 2815–2821 (2000).

    Article  CAS  Google Scholar 

  39. R. Zhang, Z. Zhu, X. Leng, J. Pan, and Y. Zhang, “Corrosion characteristic of Cu–10Ni–Fex in 3.5% NaCl,” Int. J. Electrochem. Sci., 13, 11526–11538 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Nature Science Foundation of China (project No. 51950410600) and the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. OI172037). The research presented in this paper was done with the financial support of the Ministry of Education, Science and Technological Development of the Republic of Serbia, within the funding of the scientific research work at the University of Belgrade, Technical Faculty in Bor, according to the contract with registration number 451-03-68/2020-14/ 200131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zečević.

Additional information

Translated from Metallurg, Vol. 66, No. 11, pp. 95–106, November, 2022. Russian https://doi.org/10.52351/00260827_2022_11_95.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zečević, M., Tosković, N., Djordjević, A. et al. Effect of Chemical Composition on the Corrosion Resistance, Microstructure, Hardness and Electrical Conductivity of the Ge–In–Sn Alloys. Metallurgist 66, 1452–1470 (2023). https://doi.org/10.1007/s11015-023-01460-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-023-01460-0

Keywords

Navigation