Skip to main content
Log in

Features of Implementing Thermomechanical Rolling in Various Types of Mills

  • Published:
Metallurgist Aims and scope

Features of thermo-mechanical rolling in various types of rolling mills are studied: plate mill (continuous, semicontinuous), Steckel mill, and a casting and rolling complex with a continuous broad strip mill. Limitations are considered for each type of mill due to the dimensional range, composition and location of equipment, size and composition of an original workpiece, and the possibility of manufacturing product with a good set of high strength, ductility, and cold resistance. It is shown that implementation of thermomechanical rolling taking into account features of the production scheme and understanding structure formation processes manufacture of cold-resistant rolled product is possible in all of types of the mills considered. Use of contemporary and precise structure formation models may reduce the effect of limitations with the exception of physical features, and expand the possibilities of rolled product structure and property formation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. J. Irvine, F. B. Pickering, and J. J. Gladman, “Controlled rolling of structural steel,” JISI, 208, No. 8, 717–726 (1970).

    CAS  Google Scholar 

  2. I. Kozasu, C. Ouchi, T. Sampei, and T. Okita, “Hot rolling as a high-temperature thermo-mechanical process,” in: Proc. Microalloying’ 75, Union Carbide Corp., New York (1977), pp. 120–135.

  3. T. Tanaka, N. Tabata, T. Hatomura, and C. Shiga, “Three stages of controlled rolling process,” in: Proc. Microalloying’75, Union Carbide Corp., New York (1977), pp. 120–135.

  4. V. I. Pogorzhel’skii, D. A. Litvinenko, Yu. I. Matrosov, and A. V. Ivanitskii, Controlled Rolling [in Russian], Metallurgiya, Moscow (1979).

    Google Scholar 

  5. I. Kozasu, “Overview of accelerated cooling of plate,” in: Proc. of Symp. Accelerated Cooling of Steel, Pittsburg (1985), pp. 15–35.

  6. C. Oouchi, T. Ookita, and S. Yamamoto, “The effect of interrupted accelerated cooling after controlled rolling on the mechanical properties of steels,” Tetsu-to-Hagane, 67, No. 7, 969–978 (1981).

    Article  CAS  Google Scholar 

  7. K. Tsukada, T. Ookita, C. Oouchi, et al., “Application of on-line accelerated cooling (OLAC) to steel plates,” Nippon Kokan Techn. Rep., No. 35, 24–34 (1982).

    CAS  Google Scholar 

  8. A. Yoshe, H. Morikawa, Y. Onoe, et al., “Effect of controlled rolling and accelerated cooling on microstructure and mechanical properties of high-tensile-strength steels,” in: Proc. of the Intern. Symp. on Accelerated Cooling of Rolled Steel, Canada (1988), pp. 29–41.

  9. Rudchenko (editor), Steel for Gas Pipes and Fittings, Proc. Conf. (London, 1981), Metallurgiya, Moscow (1985).

  10. I. Tamura, C. Ouchi, T. Tanaka, and H. Sekine, Thermomechanical Processing of High Strength Low Alloy Steels, Butterworth’s, Borough Green, Seven Oaks, Kent TN 158 PH, England (1989).

  11. A. J. DeArdo, “Modern thermomechanical processing of microalloyed steel: a physical metallurgy perspective,” in: Microalloying’ 95 Conf. Proc. (Pittsburgh, PA. June 11–14, 1995). The Iron and Steel Society (1995), pp. 15–33.

  12. A. V. Chastukhin, D. A. Ringinen, L. I. Éfron, D. S. Astaf’ev, and S. V. Golovin, “Development of austenite structure formation models for improving pipe steel hot rolling strategy,” Probl. Chern. Met. Materialoved., No. 3, 39–53 (2016).

  13. A. V. Chastukhin, D. A. Ringinen, S. V. Golovin, and L. I. Éfron, “Development and industrial applying on rolling mill 5000 of the model of austenite grain size evolution in Nb-microalloyed steels,” Materials Science Forum, No. 879, 312–317 (2017).

  14. B. Pereda, P. Uranga, B. López, J. M. Rodriguez-Ibabe, Z. Liu, D. Stalheim, R. Barbosa, and M. Arantes-Rebellato, “Thin slab direct rolling modeling of Nb microalloyed steels,” in: Proc. of 6th Baosteel Biennial Academic Conf. (2015), Paper No. 262.

  15. B. Pereda, P. Uranga, B. López, J. M. Rodriguez-Ibabe, M. Arantes-Rebellato, and V. Nagarajan, “Mill data based microstructural modelling for thin slab direct rolling of Nb microalloyed steels,” in: 4th Intern. Conf. on Thermomechanical Simulation and Processing of Steels SimPro’16 (2016), pp. 196–206.

  16. A. V. Chastukhin, D. A. Ringinen, G. E. Khadeev, and L. I. Éfron, “Formation of austenite structure on heating pipe steel Microalloyed with niobium,” Metallurg, No. 7, 25–31 (2015).

  17. R. Sandstrem, and R. A. Lagneborg, “Model for hot working occurring by recrystallization,” Acta Met., 23, 387–398 (1975).

    Article  Google Scholar 

  18. W. Roberts, A. Sandberg, T. Siweski, and T. Werlefors , “Prediction of microstructure development during recrystallization hot rolling on Ti–V-steels,” in: Proc. Intern. Conf. of Technology and Applications of HSLA Steels (1983), 67–84.

  19. H. Yada, “Prediction of microstructural changes and mechanical properties in hot strip rolling,” in: Proc. of the Intern. Symp. on Accelerated Cooling of Rolled Steel (Winnipeg, Canada. 1988) (988), pp. 105–119.

  20. A. Kern, J. Degenkolbe, B. Müsgen, and U. Schriever, “Computer modelling for the prediction of microstructure development and mechanical properties of HSLA steel plates,” ISIJ Intern., 32, No. 3, 387–394 (1992).

    Article  CAS  Google Scholar 

  21. A. Yoshie, M. Fujioka, Y. Watanabe, K. Nishioka, and H. Morikawa, “Modelling of microstructural evolution and mechanical properties of steel plates produced by thermo-mechanical control process,” ISIJ Intern., 32, No. 3, 395–404 (1992).

    Article  CAS  Google Scholar 

  22. A. V. Chastukhin, D. A. Ringinen, G. E. Khadeev, and L. I. Éfron, “Kinetics of pipe steel austenite recrystallization alloyed with niobium,” Metallurg, No. 12, 33-38 (2015).

  23. K. Hulka, Niobium Microalloyed Plate Products for Welded Construction: CBMM/CITIC Metal Short Course, Beijing, China (2006).

    Google Scholar 

  24. E. A. Goli-Oglu, L. I. Éfron, and Yu. D. Morozov, “Effect of deformation regime on main stages of cold rolling on pipe steel microstructure,” MiTOM, No. 6, 9–13 (2013).

  25. D. A. Ringinen, L. I. Éfron, and A. V. Chastukhin, “Construction of an operating system for new forms of product and technology” in: A. M. Barykov (editor), Development of Production Technology for Steel, Rolled Product, and Pipe within the Vyksun Production Area [in Russian], Metallurgizdat, Moscow (2016), pp. 17–24.

  26. F. Khaisterkamp, K. Khulka, Yu. I. Matrosov, Yu. D. Morozov, L. I. Éfron, V. I. Stolyarov, and O. N. Chevskaya, Niobium-Containing Low-Alloy Steels [in Russian], Intermet Inzhiniring, Moscow (1999).

    Google Scholar 

  27. L. I. Éfron, Yu. D. Morozov, and E. A. Goli-Oglu, “Effect of controlled rolling regimes on structure refinement and set of mechanical properties of low-carbon microalloyed steels,” Stal., No. 5, 67–72 (2011).

  28. E. A. Goli-Oglu, L. I. Éfron, and Yu. D. Morozov, “Effect of deformation regimes in main cold rolling stages on pipe steel microstructure,” MiTOM, No. 6, 9–13 (2013).

  29. A. V. Chastukhin, D. A. Ringinen, G. E. Khadeev, L. I. Éfron, S. V. Golovin, and V. I. Il’inskii, RF Patent 2714566, МPК В1В1/22. Method for Preparing Thick Rolled Sheet with Improved Cold Resistance for Manufacture of Electrically Welded Pipe and Weld Structures, No. 2018128103; Claim 30.07.2018; Publ. 18.02.2020, Bull No. 5.

  30. V. V. Shkatov, L. I. Frantsenyuk, and I. V. Bogomolov, “Mathematical modeling of hot rolled steel structure formation,” Stal’, No. 8, 64–69 (1995).

  31. T. M. Maccagno, J. J. Jonas, and H. D. Hodgson, “Spreadsheet modelling of grain size evolution during rod rolling,” ISIJ Intern., 36, No. 6, 720–728 (1996).

    Article  CAS  Google Scholar 

  32. D. Ringinen, A. Chastukhin, and L. Efron, “Structure formation control of microalloyed pipe steels during TMCP for enhanced low temperature toughness,” in: Proc. of the 12th Intern. Pipeline Conf., IPC2018 (Calgary, Alberta, Canada. September 24–28, 2018).

  33. A. Fujibayashi and K. Omata, “JFE Steel’s advanced manufacturing technologies for high performance steel plates,” JFE Tech. Rep., No. 5 (Mar.), 10–15 (2005).

  34. K. Omata, H. Yoshimura, and S. Yamamoto, NKK Tech. Rep., No. 179, 57 (2002).

  35. A. Fujibayashi, S. Kumagai, and T. Takeyama, Trans. Jpn. Soc. Mech. Eng. B, 51, 919 (1985).

    Article  CAS  Google Scholar 

  36. H. J. Kirsch, P. Fluess, W. Schuetz, and A. Streisselberger, “New property combinations in heavy plate via the accelerated cooling process,” Stahl und Eisen., 119, No. 3, 57 (1999).

    CAS  Google Scholar 

  37. A. Seilinger, A. Mayrhofer, and A. Kainz, “Smart crown – a new system for improved profile and flatness control in rolling mills,” Iron & Steel Review Intern., 46, No. 5, 84–88 (2002).

    Google Scholar 

  38. I. Robinson and M. Hulley, “Control of plate thermomechanical properties using MULPIC® plate cooling technology,” Proc. AISTech 2013, (Pittsburgh, USA. 6–9 May, 2013), pp. 1799–1806.

  39. N. Ishikawa, N. Shikanai, and J. Kondo, “Development of ultrahigh strength linepipes with dual-phase microstructure for high strain application,” JFE Tech. Rep., No. 12 (Oct.), 15–19 (2008).

  40. V. I. Il’inskii, S. V. Golovin, M. A. Tkachuk, D. A. Ringinen, A. V. Chervonnyi, A. V. Chastukhin, I. V. Ganoshenko, L. I. Éfron, and A. A. Kichkina, “Development of TMCR technology in MKC 5000 and application in implementing pipeline projects with extreme parameters,” in: A. M. Barykov (editor), Development of Production Technology for Steel, Rolled Product and Pipe in the Vyksun Production Area [in Russian], Metallurgizdat, Moscow (2016), pp. 340–377.

  41. V. Schwinn, “Research and development strategy on heavy plate steels and recent results at DILLINGER,” in: Proc. 2nd Intern. Symp. on the Recent Developments in Plate Steels (Orlando, USA. 3–6 June, 2018), pp. 349–360.

  42. H. Vergote, “Current status of thermo-mechanical processing in hot strip mill,” in: 2nd Intern. Conf. on Thermomechanical Processing of Steels, TMP’2004 (Liege, Belgium. 5–17 June, 2004) (20004), pp. 9–18.

  43. C. Shang, C. Miao, J. Fu, and S. V. Subramanian, “Recrystallization behavior of high Nb-bearing line pipe steel,” in: Proc. Intern. Conf. on Pipeline Technology (Ostend, Belgium. 12–14 October, 2009), Ostend (2009), p. 127.

  44. R. Grill, R. Schimbock, and G. Heigl, “Recent results from clad plate production / Recent advances of niobium containing materials in Europe,” in: Proc. of the Symp. of 30 years Anniversary of Niobium Products Company GmbH (Dusseldorf. 20 May, 2005) (2005), pp. 81–105.

  45. L. E. Collins, K. Dunnett, T. Hylton, and A. Ray, “Development of heavy gauge X70 helical line pipe,” in: Proc. of the 12th Intern. Pipeline Conf. IPC2018 (Calgary, Canada. September 24–28, 2018).

  46. J. K. Patel and P. J. Evans, “The effect of processing conditions of the consistency of mechanical properties for Nb HSLA strip steels,” in: Proc. 40th Mechanical Working and Steel ISS, Vol. XXXVII (1999), pp. 445–457.

  47. M. Militzer, et al., “Microstructural model for hot strip rolling for high strength low alloy steels,” Metal. Mater. Trans., 31A, No. 4, 1247–1259 (2000).

    Article  CAS  Google Scholar 

  48. D. Misra, and S. G. Jansto, “Niobium-based alloy design for structural applications: processing-structure-property paradigm,” in: Book “HSLA steels 2015, Microalloying 2015 & Offshore engineering steels 2015”, TMS (2016), pp. 261–266.

  49. S. Yu. Nastich, “Development of thermomechanical technology for rolled product of strength class K56-K60 under 2000 mill conditions,” Probl. Chern. Met Materialoved., No. 1, 40–53 (2012).

  50. S. Yu. Nastich, “Effect of steel Kh70 chemical composition and rolled product TMO technology parameters on mechanical property anisotropy and uniformity,” Probl. Chern. Met Materialoved., No. 2, 44–54 (2012).

  51. S. Yu. Nastich, “Manufacture of rolled product for gas conducting spiral-seam pipes of strength categories Kh70 and Kh80,” Probl. Chern. Met Materialoved., No. 4, 29–42 (2011).

  52. M. Liebeherr, D. Ruiz Romera, B. Soenen, et al., “Recent developments of high strength linepipe steels on coil,” in: Proc. of 7th Intern. Pipeline Conf. IPC2008 (Calgary, Canada. September 29 – October 3, 2008).

  53. Meng De-liang, Kang Yong-lin, An Shou-yong, Xia Dian-xiu, Sun Hao, Zheng Xiao-fei, “Microstructure and mechanical properties of Nb-microalloyed x100 high deformability pipeline steel,” in: Proc. the 6th Intern. Conf. on High Strength Low Alloy Steels – HSLA Steels’2011, Beijing, China, (2011), pp. 707–711.

  54. H. Nakate, C. Kami, and N. Matsuo, “API X80 grade electric resistance welding line pipe with excellent low temperature toughness,” JFE Gicho, No. 17, 37–41 2007.

  55. Yu. V. Konovalov and A. S. Khokhlov, “Benefits of Steckel mills in rolling,” Steel in Translation, 43, No. 4, 206–211 (2013).

    Article  Google Scholar 

  56. G. Thaller, G. Djumlija, W. Gruber, N. Champion, and A. Marples, “Les laminoirs Steckel de VAI. Rentabilité et souplesse dans laproduction de bandes laminéesà chaud et de tôles fortes,” in: La Revue de Métallurgie-CIT, Mars (2005), pp. 251–261.

  57. N. J. Champion, “Plate production technologies for the 21st century with a focus on plate-Steckel mills,” La Metallurgia Italiana, No. 7–8, 86–90 (2004).

  58. G. Thaller, G. Djumlija, W. Gruber, N. Champion, and A. Marples, “Les laminoirs Steckel de VAI. Rentabilité et souplesse dans la production de bandes laminées à chaud et de tôles fortes,” in: La Revue de Métallurgie-CIT, Mars (2005), pp. 251–261.

  59. Yu. D. Morozov, E. A. Goli-Oglu, S. Yu. Nastich, and A. V. Knyshev, “Contemporary approaches to manufacture of low-carbon microalloyed pipe steel in Steckel mills,” Chernye Metally, No. 9, 8–15 (2012).

  60. N. Chempion, “Thick-sheet mill potential and FAI technology,” Stal’, No. 8, 59–62 (2005).

  61. A. V. Muntin, A. V. Chastukhin, D. A. Ringinen, and L. I. Éfron, “Austenitic structure evolution during rolled product manufacture from pipe steels in casting and rolling complexes of different configuration,” Metallurg, No. 3, 43–53 (2019).

  62. C. Bilgen, C. Klein, and C., Klink, “CSP® Flex – New CSP® concepts for future market requirements,” AISTech Conf. Proc. (2012).

  63. A. V. Chervonnyi, D. A. Ringinen, A. V. Chastukhin, L. I. Éfron, A. V. Muntin, V. V. Naumenko, and O. A. Bagmet, “Rolled product structure and property formation for production under conditions of a casting and rolling complex,” Metallurg, No. 10, 40–47 (2018).

  64. A. J. DeArdo, et al., Intern. Symp. of Thin Slab Casting and Rolling (TSCR’2002), Guangzhou, China, Dec. 3–5, 2002, Chinese Society for Metals, Guangzhou (2002), pp. 194–210.

  65. C. M. Sellars and J. A. Whiteman, “Recrystallization and grain growth in hot rolling,” Metal Science, 13, 187–194 (1979).

    Article  CAS  Google Scholar 

  66. P. Uranga, A. I. Fernández, B. López, and J. M. Rodriguez-Ibabe, “Optimization of rolling conditions in Nb-microalloyed steel processed by thin slab casting and direct rolling route, processing maps,” Mater. Sci. Forum, 500/501, 245–252 (2005).

  67. S. Bragin, A. Rimnac, and B. Linzer, “High strength steel production. A comparison of different production routes,” in: 10th Intern. Rolling Conf., and the 7th European Rolling Conf., Graz, Austria. (2016), pp. 697–708.

  68. S. J. Bragin, B. Watzinger, A. Linzer, and C. Bernhard Bianchi, “Influence of thin slab thickness on final strip property in Arvedi ESP plant,” in: 8th European Continuous Casting Conf., Graz, Austria (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Efron.

Additional information

Translated from Metallurg, Vol. 66, No. 4, pp. 45–59, April, 2022. Russian DOI https://doi.org/10.52351/00260827_2022_04_45.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efron, L.I., Ringinen, D.A. & Muntin, A.V. Features of Implementing Thermomechanical Rolling in Various Types of Mills. Metallurgist 66, 403–421 (2022). https://doi.org/10.1007/s11015-022-01342-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-022-01342-x

Keywords

Navigation