Skip to main content

Advertisement

Log in

Microwave Sintering of Metal Powder Materials (Review)

  • Published:
Metallurgist Aims and scope

This paper presents information about the history of using microwave energy in various fields along with brief description of the theory of microwave heating, its advantages and disadvantages. A review of the results of recent studies in the field of sintering metal powders and composite materials using microwave energy is performed. The use of microwave heating becomes of interest when it comes to additive technologies utilized during synthesis of the parts, as well as post-processing of the 3D-printed products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Borrell and M.D. Salvador, “Advanced ceramic materials sintered by microwave technology,” Sintering Technology – Method and Application, No. 10, 3-24 (2018); https://www.intechopen.com/books/sintering-technology-methodand-application/advancedceramic-materials-sintered-bymicrowave-technology, DOI: https://doi.org/10.5772/intechopen.78831.

  2. S. Singh, D. Gupta, V. Jain, and K. Sharma, “Microwave processing of materials and applications in manufacturing industries: a review,” Materials and Manufacturing Processes, No. 30, 1–29 (2015); DOI: https://doi.org/10.1080/10426914.2014.952028.

  3. A. S. Vanetsev, Sintering of Oxide Powders using Microwave Exposure. Problem Descriptions from Special Practicum “Methods for the Production and Analysis of Inorganic Materials” [in Russian], Moscow State University, Moscow (2011).

  4. A. S. Vanetsev and Yu. D. Tretyakov, “Microwave synthesis of individual and multicomponent oxides,” Uspekhi Khimii, No. 76 (5), 435–453 (2007).

  5. M. A. Molodtsova and Yu. V. Sevastyanova, “Opportunities and prospects for industrial use of microwave radiation (review),” Izv. Vuzov, Lesnoi Zhurnal, No. 2, 173–187 (2017); DOI: https://doi.org/10.17238/issn0536-1036.2017.2.173.

  6. R. T. Hitchcock, Radio-Frequency and Microwave Radiation, American Industrial Hygiene Assn. (2004), ISBN 978-1931504553.

  7. P. R. Matli, R. A. Shakoor, A. M. A. Mohamed, and M. Gupta, “Microwave rapid sintering of al-metal matrix composites: a review on the effect of reinforcements, microstructure and mechanical properties,” Metals, No. 6, 143 (2016); DOI:https://doi.org/10.3390/met6070143.

  8. J. W. Walkiewicz, G. Kazonich, and S. L. McGill, “Microwave heating characteristics of selected minerals and compounds,” Min. Metall Process., No. 5, 39–42 (1988).

  9. R. Roy, D. Agarwal, J. P. Chen, and S. Gedevanishvili, “Full sintering of powdered-metal bodies in a microwave field,” Nature, No. 399, 668–670 (1999).

  10. M. Bhattacharya and T. Basak, “A review on the susceptor assisted microwave processing of materials,” Energy, 97, 306–338 (2016).

    Article  Google Scholar 

  11. R. R. Mishra, S. Rajesha, and A. K. Sharma, “Microwave sintering of pure metal powders – a review,” Int. J. of Advanced Mechanical Engineering, 4, No. 3, 315–322 (2014).

    Google Scholar 

  12. G. Sethi, A. Upadhyaya, and D. Agrawal, “Microwave and conventional sintering of pre-mixed and prealloyed Cu–12Sn bronze,” Sci of Sintering, No. 35, 49–65 (2003).

  13. S. Takayama, G. Link, S. Miksch, M. Sato, J. Ichikawa, and M. Thumm, “Millimeter wave effects on sintering behavior of metal powder compacts,” Powder Metallurgy, 49, No. 3, 274–280 (2006).

  14. M. Mahmoud, G. Link, J. Jelonnek, and M. Thumm, “Investigation on mm-wave sintering of metal powder compacts using in-situ dilatometry and electrical resistivity measurements,” 10th International Workshop – 2017 “Strong Microwaves and Terahertz Waves: Sources and Applications,” EPJ Web of Conferences, 149, No. 02007, 1–2 (2017); DOI: https://doi.org/10.1051/epjconf/201714902007.

  15. R. Rummana, L. C. Chuanc, J. S. Quintona, and R. Ghomashchib, “Understanding the potential of microwave sintering on WC–Co,” Int. J. of Refractory Metals & Hard Materials, No. 81, 7–14 (2019).

  16. S. C. Tao, J. L. Xu, L. Yuan, J. M. Luo, and Y. F. Zheng, “Microstructure, mechanical properties and antibacterial properties of the microwave sintered porous Ti–3Cu alloys,” J. of Alloys and Compounds, 812, 152142 (2020).

    Article  CAS  Google Scholar 

  17. L. Bolzoni, S. Raynova, and F. Yang, “Work hardening of microwave sintered blended elemental Ti alloys,” J. of Alloys and Compounds, 838, 155559 (2020).

    Article  CAS  Google Scholar 

  18. S. Raynova, M. A. Imam, F. Yang, and L. Bolzoni, “Hybrid microwave sintering of blended elemental Ti alloys,” J. of Manufacturing Processes, No. 39, 52–57 (2019).

  19. W. Xu, J. Yuan, Z. Yin, M. Chen, and Z. Wang, “Effect of metal phases on microstructure and mechanical properties of Si3N4-based ceramic tool materials by microwave sintering,” Ceramics International, No. 44, 19872–19878 (2018).

  20. M. Hossein-Zadeh, E. Ghasali, O. Mirzaee, H. Mohammadian-Semnani, M. Alizadeh, Y. Orooji, and T. Ebadzadeh, “An investigation into the microstructure and mechanical properties of V2AlC MAX phase prepared by microwave sintering,” J. of Alloys and Compounds, 795, 291–303 (2019).

    Article  CAS  Google Scholar 

  21. E. Ghasali, A. Bordbar-Khiabani, M. Alizadeh, M. Mozafari, M. Niazmand, H. Kazemzadeh, T. Ebadzadeh, “Corrosion behavior and in-vitro bioactivity of porous Mg/Al2O3 and Mg/Si3N4 metal matrix composites fabricated using microwave sintering process,” Materials Chemistry and Physics, No. 225, 331–339 (2019).

  22. Z. Zhao, G. Zhang, S. Wang, X. Zhao, and C. Guan, “Preparation of ultrafine cemented carbides with uniform structure and high properties by microwave sintering,” Materials Letters, 260, 126971 (2020).

    Article  Google Scholar 

  23. K. I. Rybakov and I. I. Volkovskaya, “Electromagnetic field effects in the microwave sintering of electrically conductive powders,” Ceramics International, No. 45, 9567–9572 (2019).

  24. M. Darabi, M. Rajabi, and N. Nasiri, “Microstructural, mechanical and thermal properties of microwave sintered Cu–MWCNT nanocomposites,” J. of Alloys and Compounds, 822, 153675 (2020).

    Article  CAS  Google Scholar 

  25. L. Wang, L. Xu, C. Srinivasakannan, S. Koppala, Z. Han, and H. Xia, “Electroless copper plating of tungsten powders and preparation of WCu20 composites by microwave sintering,” J. of Alloys and Compounds, 764, 177–185 (2018).

    Article  CAS  Google Scholar 

  26. N. Vasudevan, N. Nihaar, N. Ahamed, B. Pavithra, A. Aravindhan, and B. P. Shanmugavel, “Effect of Ni addition on the densification of TiC: A comparative study of conventional and microwave sintering,” Int. J. of Refractory Metals & Hard Materials, 87, 105165 (2020).

    Article  CAS  Google Scholar 

  27. C. Wei, X. Xu, B. Wei, J. Cheng, and P. Chen, “Effect of diamond surface treatment on microstructure and thermal conductivity of diamond/W–30Cu composites prepared by microwave sintering,” Diamond & Related Materials, 104, 107760 (2020).

    Article  CAS  Google Scholar 

  28. G. N. Felege, N. P. Gurao, and A. Upadhyaya, “Microstructure, microtexture and grain boundary character evolution in microwave sintered copper,” Materials Characterization, 157, 109921 (2019).

    Article  CAS  Google Scholar 

  29. B. Duan, Z. Zhang, D. Wang, and T. Zhou, “Microwave sintering of Mo nanopowder and its densification behavior,” Trans. Nonferrous Met. Soc. China, 29, 1705–1713 (2019).

    Article  CAS  Google Scholar 

  30. G. Chen, K. Li, Q. Jiang, X. Li, J. Peng, M. Omran, and J. Chen, “Microstructure and enhanced volume density properties of FeMn78C8.0 alloy prepared via a cleaner microwave sintering approach,” J. of Cleaner Production, 262, 121364 (2020).

    Article  CAS  Google Scholar 

  31. S. Guo, X. Ye, L. Wang, S. Koppala, L. Yang, T. Hu, J. Gao, M. Hou, and L. Hu, “Fabrication of Cu based metallic binder for diamond tools by microwave pressureless sintering,” Materials, No. 11, 1453 (2018); DOI: https://doi.org/10.3390/ma11081453.

  32. L. Yang, L. Wang, J. Gao, S. Guo, X. Ye, S. Koppala, T. Hu, M. Hou, and L. Hu, “Optimization of process parameters for preparing metallic matrix diamond tool bits by microwave pressureless sintering using response surface methodology,” Materials, No. 11. 2185 (2018); DOI: https://doi.org/10.3390/ma11112185.

  33. M. S. Srinath, A. K. Sharma, and P. Kumar, “Investigation on microstructural and mechanical properties of microwave processed dissimilar joints,” J. of Manufacturing Processes, No. 13, 141–146 (2011); DOI: https://doi.org/10.1016/j.jmapro.2011.03.001.

  34. S. Chandrasekaran, T. Basak, and S. Ramanathan, “Experimental and theoretical investigation on microwave melting of metals,” J. of Materials Processing Technology, No. 211, 482–487 (2011).

  35. E. Ghasali, R. Yazdani-rad, K. Asadian, and T. Ebadzadeh, “Production of Al–SiC–TiC hybrid composites using pure and 1056 aluminum powders prepared through microwave and conventional heating methods,” J. of Alloys and Compounds, 690, 512–518 (2017); DOI: https://doi.org/10.1016/j.jallcom.2016.08.145.

    Article  CAS  Google Scholar 

  36. E. Ghasali, A. Pakseresht, F. Safari-kooshali, M. Agheli, and T. Ebadzadeh, “Investigation on microstructure and mechanical behavior of Al–ZrB2 composite prepared by microwave and spark plasma sintering,” Mater. Sci. & Eng. A., 627, 27–30 (2015).

    Article  CAS  Google Scholar 

  37. N. Saheb, “Spark plasma and microwave sintering of Al6061 and Al2124 alloys,” Int. J. of Minerals, Metallurgy and Materials, 20, No. 2, 152–156 (2013); DOI: https://doi.org/10.1007/s12613-013-0707-6.

  38. M. Gupta and W.L.E. Wong, “Enhancing overall mechanical performance of metallic materials using two-directional microwave assisted rapid sintering,” Scripta Materialia, No. 52, 479–483 (2005).

    Article  CAS  Google Scholar 

  39. E. Ghasali, A. H. Pakseresht, M. Alizadeh, K. Shirvanimoghaddam, and T. Ebadzadeh, “Vanadium carbide reinforced aluminum matrix composite prepared by conventional, microwave and spark plasma sintering,” J. of Alloys and Compounds, 688, 527–533 (2016).

    Article  CAS  Google Scholar 

  40. M. Hou, J. Gao, L. Yang, E. Ullah, T. Hu, S. Guo, L. Hu, and Y. Li, “The role of pre-alloyed powder combined with pressure-less microwave sintering on performance of superhard materials,” J. of Alloys and Compounds, 831, 154744 (2020).

    Article  CAS  Google Scholar 

  41. E. Ghasali, M. Alizadeh, M. Niazmand, and T. Ebadzadeh, “Fabrication of magnesium-boron carbide metal matrix composite by powder metallurgy route: Comparison between microwave and spark plasma sintering,” J. of Alloys and Compounds, 697, 200–207 (2017).

    Article  CAS  Google Scholar 

  42. A. Mondal, D. Agrawal, and A. Upadhyaya, “Microwave heating of pure copper powder with varying particle size and porosity,” J. of Microwave Power & Electromagnetic Energy, 43, No. 1, 5–9 (2009); DOI: https://doi.org/10.1080/08327823.2008.11688599.

    Article  Google Scholar 

  43. R. M. Anklekar, K. Bauer, D. K. Agrawal, and R. Roy, “Improved mechanical properties and microstructural development of microwave sintered copper and nickel steel PM parts,” Powder Metallurgy, 48, No. 1, 39–46 (2005).

  44. P. Chhillar, D. Agrawal, and J. H. Adair, “Sintering of molybdenum metal powder using microwave energy,” Powder Metallurgy, 51, No. 2, 182–187 (2008).

  45. E. Breval, J. P. Cheng, D. K. Agrawal, P. Gigl, M. Dennis, R. Roy, and A. J. Papworth, “Comparison between microwave and conventional sintering of WC/Co composites,” Mater. Sci. and Eng. A, 391, 285–295 (2005).

    Article  Google Scholar 

  46. S. Zafar and A. K. Sharma, “Development and characterizations of WC-12Co microwave clad,” Materials Characterization, 96, 241–248 (2014).

    Article  CAS  Google Scholar 

  47. D. Gupta, P. M. Bhovi, A. K. Sharma, and S. Dutta, “Development and characterization of microwave composite cladding,” J. of Manufacturing Processes, 14, 243–249 (2012).

    Article  Google Scholar 

  48. R. I. Badiger, S. Narendranath, and M. S. Srinath, “Joining of Inconel-625 alloy through microwave hybrid heating and its characterization,” J. of Manufacturing Processes, 18, 117–123 (2015).

    Article  Google Scholar 

  49. A. Mondal, D. Agrawal, and A. Upadhyaya, “Microwave sintering of refractory metals/alloys: W, Mo, Re, W–Cu, W–Ni–Cu and W–Ni–Fe Alloys,” J. of Microwave Power and Electromagnetic Energy, 44 (1), 28-44 (2010).

    Article  Google Scholar 

  50. D.S. Vorunichev and K.Yu. Vorunicheva, “Current capabilities of the technology for prototyping multilayer printed circuit boards on a 3D printer,” Ros. Tekhnol. Zhurn., 9, No. 4, 27–38 (2021); https://doi.org/10.32362/2500-316X-2021-9-4-28-37.

  51. M. Salehi, S. Maleksaeedi, M. L. S. Nai, and M. Gupta, “Towards additive manufacturing of magnesium alloys through integration of binderless 3D-printing and rapid microwave sintering,” Additive Manufacturing, 29, 100790 (2019).

    Article  CAS  Google Scholar 

  52. A. Shelef and E. Jerby, “Incremental solidification (toward 3D-printing) of metal powders by transistor-based microwave applicator,” Materials & Design, 185, 108234 (2020).

    Article  CAS  Google Scholar 

  53. B. Vaidhyanathan, K. Annapoorani, and W. Rowlands, “Field assisted processing of 3D-printed ceramics,” in: ECI Symposium Series on Electric-Field Enhanced Processing of Advanced Materials II: Complexities and Opportunities, Tomar, Portugal, March (2019).

  54. E. N. Kablov. “Innovative developments of FSUE “VIAM” of the Russian Federation State science center on the implementation of “strategic directions for the development of materials and material processing technologies for a period until 2030,” Aviats. Mater. Tekhnol., No. 1(34), 3–33 (2015); DOI: https://doi.org/10.18577/2071-9140-2015-0-1-3-33.

  55. E. N. Kablov, I. L. Svetlov, A. V. Neiman, P. G. Min, F. N. Karachevtsev, and M. I. Karpov, “High-temperature composites based on the Nb-Si system reinforced with niobium silicides,” Inorganic Materials: Applied Research, 8, No. 4, 609–617 (2017).

  56. E. N. Kablov, Yu. A. Bondarenko, and A. B. Echin, “Development of the technology for directed crystallization of cast super heatresistant alloys with a variable controlled temperature gradient,” Aviats. Mater. Tekhnol., No. S, 24–38 (2017); DOI: https://doi.org/10.18577/2071-9140-2017-0-S-24-38.

  57. E. N. Kablov, “What will the future be made of? New generation materials, their creation and processing technologies – the basis of innovation,” Kryl’ya Rodiny, No. 5, 8–18 (2016).

  58. R. V. Batienkov, I. Yu. Yefimochkin, S. G. Kolyshev, and A. A. Khudnev, “The effect of heat treatment on the structure and mechanical properties of the Mo–Ti–Zr–C system alloy obtained by spark plasma sintering,” Trudy VIAM (Electronic Science and Technology Journal), Nos. 4-5 (88), 3–12 (2020); URL: http://www.viam-works.ru. (access date: June 01, 2020); DOI: https://doi.org/10.18577/2307-6046-2020-0-45-3-12.

  59. N. N. Trofimenko, I. Yu. Yefimochkin, I. V. Osin, and R. M. Dvoretskov, “Study of the possibility of obtaining a high-entropy alloy VNbMoTaW by mixing elementary powders with subsequent compaction by hybrid spark plasma sintering,” Aviats. Mater. Tekhnol., No. 2 (55), 12–20 (2019); DOI: https://doi.org/10.18577/2071-9140-2019-0-2-12-20.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Batienkov.

Additional information

Translated from Metallurg, Vol. 65, No. 10, pp. 82–91, October, 2021. Russian DOI 10.52351/00260827_2021_10_82.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batienkov, R.V., Bol’shakova, A.N. & Khudnev, A.A. Microwave Sintering of Metal Powder Materials (Review). Metallurgist 65, 1163–1173 (2022). https://doi.org/10.1007/s11015-022-01260-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-022-01260-y

Keywords

Navigation