Skip to main content
Log in

Opening of Sulfide Gold-Bearing Ores using Nanosecond Electromagnetic Pulses in Aqueous Medium

  • Published:
Metallurgist Aims and scope

This article demonstrates that the yields of gold, silver, and copper increase when sulfide gold-bearing ore is exposed to nanosecond electromagnetic pulses (NEMP) in an aqueous medium. The pulse generator was operated under a duration of 1 ns, pulse rise front of 0.1 ns, amplitude of 15 kV, repetition rate of 1 kHz, and pulse power of 4.5 MW to study the impact of NEMP on ore extraction. The research objects were sulfide ores obtained from the open pit of Bashkir Gold Mining Company. Results revealed the possibility of using the proposed method to prepare gold-bearing ores for cyanidation to increase their output of precious and non-ferrous metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. G. A. Mesyats, Pulse Power Engineering and Electronics [in Russian], Nauka, Moscow (2004).

    Google Scholar 

  2. M. T. Pichugina, Powerful Impulse Technology [in Russian], Izdatelstvo TPU, Tomsk (2005).

    Google Scholar 

  3. G. Lin, S. Lu, and J. Liu, “Transmitting boundary for transient analysis of wave propagation in layered media formulated based on acceleration unit-impulse response,” Soil Dyn. Earthq. Eng., 90, 494–509 (2016).

    Article  Google Scholar 

  4. A. P. Lysenko, A. Yu. Nalivaiko, D. S. Kondratyeva, and S. V. Kondratyev, “Electrochemical method for producing ferrotitanium,” Tsvetn. Metall., No. 6, 34–38 (2019).

    Article  Google Scholar 

  5. A. E. Pelevin, N. A. Sytykh, “The use of separators with increased magnetic field induction in the beneficiation of titanomagnetite ore,” Obogashchen. Rud, No. 2, 15–20 (2020).

    Article  Google Scholar 

  6. N. B. Shakhova, T. A. Yurmazova, H. T. Tuan, and A. N. Tuan, “Pulsed electric discharge in active metallic grains for water purification processes,” Procedia Chem., 15, 292–300 (2015).

    Article  CAS  Google Scholar 

  7. H. N. Rajha, A.-M. Abi-Khattar, S. E. Kantar, N. Boussetta, N. Lebovka, R. G. Maroun, N. Louka, and E. Vorobiev, “Comparison of aqueous extraction efficiency and biological activities of polyphenols from pomegranate peels assisted by infrared, ultrasound, pulsed electric fields and high-voltage electrical discharges,” Innov. Food Sci. Emerg. Technol., 58, 102212 (2019).

    Article  CAS  Google Scholar 

  8. M. Chadni, N. Grimi, I. Ziegler-Devin, N. Brosse, and O. Bals, “High voltage electric discharges treatment for high molecular weight hemicelluloses extraction from spruce,” Carbohydr. Polym., 222, 115019 (2019).

    Article  CAS  Google Scholar 

  9. S. V. Kotunov, V. O. Krasnogorov, D. Yu. Tupikov, and P. E. Ivanov, “Results of testing a new roller-type magnetic separator on manganese ores of the Selezenskoye deposit,” Obogashchen. Rud, No. 5, 37–41 (2017).

    Article  Google Scholar 

  10. B. Sun, Y. Xin, X. Zhu, Z. Gao, Z. Yan, and T. Ohshima, “Effects of shock waves, ultraviolet light, and electric fields from pulsed discharges in water on inactivation of Escherichia coli,” BBA–Biomembranes, 1859, 2040–2050 (2017).

    Article  Google Scholar 

  11. R. C. Burke, S. M. Bardet, L. Carr, S. Romanenko, D. Arnaud-Cormos, Ph. Leveque, and R. P. O’Connor, “Nanosecond pulsed electric fields depolarize transmembrane potential via voltagegated K+, Ca2+ and TRPM8 channels in U87 glioblastoma cells,” Bioelectrochemistry, 120, 112–119 (2018).

    Article  Google Scholar 

  12. F. Yang and Y. Lu, “Emission enhancement of femtosecond laser-induced breakdown spectroscopy by combining nanoparticle and dual-pulse on crystal SiO2,” Opt. Laser Technol., 93, 194–200 (2017).

    Article  CAS  Google Scholar 

  13. V. F. Balakirev, V. V. Crymsky, V. A. Baturin, and A. P. Greshnyakov, “Electropulse processing of aqueous solutions,” Proceedings of international conference VI Radiation-Thermal Effects and Processes in Inorganic Materials, Izdatelstvo TPU, Tomsk, 419–423 (2008).

  14. V. A. Chanturia, E. L. Chanturia, I. Zh. Bunin, M. V. Ryazantseva, E. V. Koporulina, A. L. Samusev, and N. E. Anashkina, “Influence of acid and electrochemical processing of mineral suspensions on the physicochemical and electrical properties of tantalite, columbite, zircon, and feldspar,” Fiziko-tekhnichesk. Problem. Razrabot. Polezn. Isk., No. 4, 142–157 (2016).

    Google Scholar 

  15. A. F. Usov, V. A. Tsukerman, and V. I. Kurets, “Experience in the development of tools for electro-impulse disintegration of materials,” Gornyy Informatsionno-analitichesk. Byulleten (scientific and technical journal), 310–318 (2011).

  16. I. Zh. Bunin, N. S. Bunina, V. A. Vdovin et al., “Experimental study of the non-thermal effect of powerful electromagnetic pulses on refractory gold-bearing raw materials,” Izv. An. Ser. Fizicheskaya, 65, No. 12, 1788–1792 (2001).

    CAS  Google Scholar 

  17. V. A. Chanturia, I. Zh. Bunin, and A. T. Kovalev, “The role of gas outflow from nanosecond breakdown channels in the process of electric pulse disintegration of sulfide minerals,” Izv. RAN. Ser. Fizicheskaya, 74, No. 5, 714–717 (2010).

    Google Scholar 

  18. V. A. Chanturia, I. Zh. Bunin, A. T. Kovalev, and E. V. Koporulina, “The processes of formation of micro- and nanophases on the surface of sulfide minerals under the action of nanosecond electromagnetic pulses,” Izv. RAN. Ser. Fizicheskaya, 76, No. 7, 846–850 (2012).

    Google Scholar 

  19. Reinhard Müller-Siebert and Joel Colli, Pat. 2670126 RF. IPC B02C 19/18RU2670126 C1, Method (Options) and Devices for Crushing into Blocks and/or Weakening of Bulk Material Using High-Voltage Discharges (Invention); submitter 02/27/2015; published08/18/2018, Bul. No. 29.

  20. Selfrag, High Voltage Pulse Power Fragmentation; URL: http://www.selective-fragmentation.com (date of reference 07/13/2020).

  21. A. F. Usov, A. S. Potokin, “Pulse transformation of voltage and energy for electro-pulse destruction of materials,” Proceedings of Kola Science Center RAS, No. 7 (26) (2014); URL: https://cyberleninka.ru/article/n/impulsnoe-transformirovanie-napryazheniya-ienergii-dlya-elektroimpulsnogo-razrusheniya-materialov (date of reference: 07/16/2020).

  22. A. F. Usov, A. S. Potokin, and D. V. Ilyin, “Investigation of methods of energy optimization of technological use of discharge-pulse low-temperature plasma in condensed media,” Proceedings of Kola Science Center RAS, No. 5-13 (39) (2016); URL: https://cyberleninka.ru/article/n/issledovanie-metodov-energeticheskoy-optimizatsii-tehnologicheskogo-ispolzovaniya-razryadnoimpulsnoy- nizkotemperaturnoy-plazmy-v (date of reference: 07/16/2020).

  23. D. G. Grishin, V. V. Krymsky, “Electric pulse activation of water,” Collection Engineering, Innovation, Investment, Issue 7, ed. V. V. Erofeev, Chelyabinsk, Izd. ChNC RAEN, ChelCNTI, 106–109 (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Krymsky.

Additional information

Translated from Metallurg, Vol. 64, No. 12, pp. 51–55, December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krymsky, V.V., Mingazheva, Y.G. & Sultanov, Z.Y. Opening of Sulfide Gold-Bearing Ores using Nanosecond Electromagnetic Pulses in Aqueous Medium. Metallurgist 64, 1288–1294 (2021). https://doi.org/10.1007/s11015-021-01117-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-021-01117-w

Keywords

Navigation