Skip to main content
Log in

Features of Multicomponent Secondary Aluminium Alloy Structure Formation

  • Published:
Metallurgist Aims and scope

The Uzbekistan Republic does not produce aluminum alloys in spite of their enormous demand. Primarily this concerns the engineering industry. Further development of engineering, expansion of equipment production and structures is impossible without using aluminum alloys. This article provides results of a study of formation during crystallization of aluminum alloy structure from scrap and waste. Versions are shown for producing the optimum structure of secondary alloys. Methods and a scientific approach are considered in the article used for other groups of alloys that it is possible to develop of the basis of the Navoi Mining and Metallurgical Combine production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N. A. Belov, A. A. Aksenov, and D. G. Eskin, Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys, Elsevier (2005).

  2. V. S. Zolotorevskiy, N. A. Belovand, and M. V. Glazoff, Casting Aluminum Alloys, Elsevier (2007)..

  3. D. E. Eskin, A. Suyitno, and L. Katgerman, “Mechanical properties in the semi-solid state and hot tearing of aluminium alloys,” Progress in Mat. Science,49, No. 5, 630–711 (2004).

    Article  Google Scholar 

  4. C. Sung-Hwan, S. Si-Young, C. Hyun-Joo, et al., “High temperature tensile deformation behavior of new heat resistant aluminum alloy,” Proc. Eng.,10, 159–164 (2011).

    Article  Google Scholar 

  5. N. A. Belov, E. A. Naumova, V. V. Doroshenko, and T. A. Bazlova, “Effect of manganese and iron on the phase composition and microstructure of aluminum-calcium alloys,” Tsvetn. Metally, No. 8, 66–71 (2017).

    Article  Google Scholar 

  6. A. A. Andreeva, S. Yu. Mansurov, D. V. Miklushevskiy, and Yu. N. Mansurov, “Model of formation of innovation process for large industrial enterprises,” Tsvetn. Metally,3, 74–77 (2015).

    Article  Google Scholar 

  7. Yu. N. Mansurov, V. P. Reva, S. Yu. Mansurov, and M. V. Beloborodov, “Economic and social basis of material science development in the far east,” Tsvetn. Metally,11, 88–93 (2016).

    Article  Google Scholar 

  8. D. V. Miklushevskiy, S. Y. Mansurov, T. N. Piterskaya, and Yu. N. Mansurov, “Economy and innovation management of universities,” Tsvetn. Metally,9, 6–12 (2015).

    Article  Google Scholar 

  9. P. Uliasz, T. Knych, A. Mamala, and B. Smyrak, “Investigation in properties design of heat resistant AlZrSc alloy wires assigned for electrical application,” in: Aluminium Alloys: Their Physical and Mechanical Properties (2008), pp. 248–255.

  10. Yu. N. Mansurov, N. A. Belov, A. V. Sannikov, and I. Yu. Buravlev, “Optimization of composition and properties of heat resistant complex-alloyed aluminum alloy castings,” Non-Ferrous Metals,39. No. 2, 48–55 (2015).

  11. A. A. Aksenov, Y. N. Mansurov, V. P. Reva, et al., “Mechanical alloying of secondary raw material for foam aluminum production,” Metallurgist,61, No. 5-6, 475–484 (2017).

  12. Yu. N. Mansurov, E. I. Kurbatkina, I. Yu. Buravlev, and V. P. Reva, “Features of structure’s formation and properties of composite aluminum alloy ingots,” Nonferrous Metals,39, No. 2, 40–47 (2015).

  13. J. Qiu, Y. Liu, F. Meng, et al., “Effects of environment on dry sliding wear of powder metallurgical Ti–47Al–2Cr–2Nb–0.2W,” Intermetallics,53, 10–19 (2014).

    Article  CAS  Google Scholar 

  14. J. Cheng, Y. Yu, L. Fu, et al., “Effect of TiB2 on dry-sliding tribological properties of TiAl intermetallics,” Tribol. Int.,62, 91–99 (2013).

    Article  CAS  Google Scholar 

  15. A. V. Kartavykh, M. V. Gorshenkov, V. D. Danilov, et al., “Tribochemistry of dry-sliding wear of structural TiAl (Nb, Cr, Zr) B, La intermetallics family against the chromium steel,” Tribol. Int.,90, 270–277 (2015).

    Article  CAS  Google Scholar 

  16. K. Knipling, D. Dunand, and D. Seidman, “Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during isothermal aging at 375–425°C,” Acta Mater.,56, 114–127 (2008).

    Article  CAS  Google Scholar 

  17. W. Lefebvre, F. Danoix, H. Hallem, et al., “Precipitation kinetic of Al3(Sc, Zr) dispersoids in aluminium,” J. Alloys Compd.,470, 107–110 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Mansurov.

Additional information

Translated from Metallurg, Vol. 63, No. 12, pp. 60–66, December, 2019. Original article July 13, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansurov, Y.N., Rikhsiboev, A.R. & Mansurov, S.Y. Features of Multicomponent Secondary Aluminium Alloy Structure Formation. Metallurgist 63, 1303–1312 (2020). https://doi.org/10.1007/s11015-020-00952-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-020-00952-7

Keywords

Navigation