Wear and Breakage Resistance of Hard Alloy Coatings Strengthened with Tungsten Carbide

  • S. A. Sidorov
  • Ya. P. Lobachevskii
  • V. K. Khoroshenkov
  • T. Sh. Akhmedova
  • D. A. Vorob’ev
Article

An increase in the wear resistance of soil cultivating equipment components by applying a hard-alloy coating is often used in practice. The good wear resistance of hard alloys is provided, in particular, by the presence of tungsten carbide within them. However, a lack of evaluation of the resistance of these alloys to breakage and life under operating conditions limits their extensive propagation (alongside cost). Results are given in this work for laboratory and operating tests of hard alloys with added tungsten carbide (in combination with hard alloys based on iron and nickel) on wear resistance, and the alloy breakage mechanism with plasma surfacing on soil cultivating machine tool components is evaluated.

Keywords

tungsten carbide hard-alloy surfacing wear resistance breakage resistance operational tests 

References

  1. 1.
    S. A. Sidorov, Increase in the Endurance and Operating Capacity of Soil Cultivation Machine Tools and Equipment Used in Agriculture and Forestry: Diss. Doc. Techn. Sci., VISKhOM, Moscow (2007).Google Scholar
  2. 2.
    A. Yu. Izmailov, S. A. Sidorov, Ya. P. Dobachevskii, et al., “Scientific principles of improving the wear resistance of working tools of soil cultivators,” Vestn. Ros. Selskokhoz. Nauki, No. 3, 5–7 (2012).Google Scholar
  3. 3.
    A. Khasui and O. Morigaki, Surfacing and Atomization [Russian translation], Mashinostronie, Moscow (1985).Google Scholar
  4. 4.
    G. I. Glushkov, Technology of Hard Alloy Coating of Rapidly Wearing Components, ONTI-NKTP-SSSR, Leningrad (1935).Google Scholar
  5. 5.
    S. A. Sidorov, D. A. Mironov, V. K. Khoroshenkov, and E. I. Khlusova, “Surfacing meethods for improving the life of rapidly wearing agricultural machine working tools,” Svaroch. Proizv., No. 10, 35–40 (2015).Google Scholar
  6. 6.
    S. A. Sidorov, “Agricultural machine engineering – high quality materials,” Selsk. Mashin. Tekhnol., No. 2, 41 (2010).Google Scholar
  7. 7.
    HETILL: Selbstscharffnde Bodenbearbende Bodenbe Bodenbearbeitungs-Werkzeuge. Technologie zur Auftragung von Hartstoffe. Schneidenranten Konstruktion für Werkzeuge. Werkstoff für die Artaufragung, Advertising preprint of INNOWELD, Austria (2004).Google Scholar
  8. 8.
    Metallurgical Powders, Polema, Tula (2014).Google Scholar
  9. 9.
    INNOSTEL 1, INNOSTELF, Firm advertising preprint, INNOWELD, Austria (1999).Google Scholar
  10. 10.
    Strength Guarantee – Life Guarantee, Advertising preprint of iQ Parts (Austria), TEKhNO-SNAB, Kamenka (2016).Google Scholar
  11. 11.
    S. A. Sidorov, V. K. Khoroshenkov, Ya. P. Dobachevskii, and T. Sh. Akhmetova, “Increase in wear resistance of hard alloy thick layer coatings by plasma deposition on agricultural machine components,” Metallurg, No. 12, 81–84 (2016).Google Scholar
  12. 12.
    S. A. Sidorov, D. A. Mironov, and I. V. Diskin, Patent 2613292 RF, IPC G01N3/56, “Round soil test unit,” subm. 12.17.2015, publ. 03.15.2017.Google Scholar
  13. 13.
    L. I. Kuksenova, Structural Steel Wear Resistance, Izd. MGTU. im. Baumana, Moscow (2011).Google Scholar
  14. 14.
    M. A. Stremel, Failure, Vol. 2, Structural Failure, ID MISiS, Moscow (2015).Google Scholar
  15. 15.
    E. A. Sokolovskaya, “Reproducibility of results for measuring structure and fractures using computerized procedures,” Vopr. Materialoved., No. 4 (76), 143–153 (2013).Google Scholar
  16. 16.
    M. A. Stremel, Failure, Vol. 1, Material Failure, ID MISiS, Moscow (2014).Google Scholar
  17. 17.
    A. V. Kudrya, E. A. Sokolovskaya, T. Sh. Akhmedova, and V. Yu. Perezhogin, “Inhomogeneity of structure and failure of hard alloys based on iron and measurement,” Elektrometallurgiya, No. 6, 32–40 (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. A. Sidorov
    • 1
  • Ya. P. Lobachevskii
    • 1
  • V. K. Khoroshenkov
    • 1
  • T. Sh. Akhmedova
    • 2
  • D. A. Vorob’ev
    • 2
  1. 1.Federal Scientific Agro-Engineering Center VIMMoscowRussia
  2. 2.National University of Science and Technology MISiSMoscowRussia

Personalised recommendations