Simulation of the Energy States of Electrolyzers with Roasted Anodes at Elevated Currents

  • I. A. Sysoev
  • V. V. Kondrat’ev
  • T. I. Zimina
  • A. I. Karlina
Article
  • 1 Downloads

The technology of electrolysis of aluminum is permanently improved in the direction of increasing the unit power of electrolyzers. The leading aluminum companies over the world try to exploit powerful electrolyzers with roasted anodes operating at current intensities higher than 300 kA because their application improves the ecological and economic efficiency of new plants. The elevation of the current strength aimed at increasing the productivity of an electrolyzers is often restricted by the negative consequences of the influence of thermal loads. To get a stable technology of electrolysis when the power is increased, it is necessary to guarantee the possibility of efficient heat removal from the structural elements. We present the materials on the development and verification of the mathematical model of electrolyzers with a base level of current strength equal to 300 kA. The comparison of the numerical results with the experimental data confirmed the convergence of the values. The power parameters of electrolyzers are obtained for the current strength elevated up to 330 kA. The influence of various engineering decisions aimed at the optimization of the energy state of baths and their influence on the engineering and economic parameters of the process of electrolysis are investigated.

Keywords

aluminum electrolyzer simulation temperature current strength voltage power interpolar distance power mode specific consumption of electric energy 

References

  1. 1.
    B. I. Zel’berg, L. V. Ragozin, A. G. Barantsev, et al. Handbook of Metallurgists. Production of Aluminum and Aluminum-Based Alloys, Izd. Irkutsk State Tech. Univ., Irkutsk (2015).Google Scholar
  2. 2.
    S. I. Nozhko, S. N. Turusov, and V. I. Nikitin, “Technological approach to the control over the energy mode of an electrolyzer,” Tsvet. Met., No. 8, 85–87 (2006).Google Scholar
  3. 3.
    M. M. Vetyukov, A. M. Tsyplakov, and S. N. Shkol’nikov, Electrometallurgy of Aluminum and Magnesium, Metallurgiya, Moscow (1987).Google Scholar
  4. 4.
    G. V. Galevskii, M. Ya. Mintsis, and G. A. Sirazutdinov, Aluminum Metallurgy: A Handbook of Technological and Design-Basis Measurements and Numerical Analyses, Sib. State Industrial Univ., Novokuznetsk (2010).Google Scholar
  5. 5.
    A. Ya. Karvats’kyi, P. I. Dudnikov, S. V. Leleka, and A. I. Zhuchenko, “Application of the method of boundary elements to the solution of three-dimensional problems of heat conduction,” Nauk. Visti NTUU KPI, No. 5, 5–13 (2005).Google Scholar
  6. 6.
    G. V. Arkhipov, “Mathematical modeling of aluminum reduction cells in the Russian Aluminum Company,” Light Metals, 473–478 (2004).Google Scholar
  7. 7.
    G. V. Arkhipov, “The mathematical modeling of aluminum reduction cells,” J. Miner. Metals Mater. Soc. (JOM), 58, No. 2, 54–56 (2006).CrossRefGoogle Scholar
  8. 8.
    M. Dupuis, “Computation of aluminum reduction cell energy balance using ANSYSR Finite Element Models,” Light Metals, 409–417 (1998).Google Scholar
  9. 9.
    V. Kondrat’ev, A. Govorkov, M. Lavrent’eva, et al. “Description of the heat exchanger unit construction created in the IRNITU,” Int. J. Appl. Eng. Res., 11, No. 19, 9979–9983 (2016).Google Scholar
  10. 10.
    I. A. Sysoev, V. V. Kondrat’ev, S. G. Shakhrai, and A. I. Karlina, “Development of a procedure of control over the energy mode of electrolyzers for the production of aluminum,” Tsvet. Met., No. 5 (881), 38–43 (2016).Google Scholar
  11. 11.
    S. G. Shakhrai, A. P. Skuratov, V. V. Kondrat’ev, and V.A. Ershov, “Utilization of the heat of anodic gases of aluminum electrolyzers,” Tsvet. Met., No. 2 (878), 52–56 (2016).Google Scholar
  12. 12.
    S. G. Shakhrai, V. A. Gron, V. V. Kondrat’ev, et al., “Cooling of the anode gases of aluminum reduction cells in alumina-heating heat exchangers,” Metallurgist, 59, Nos. 1–2, 126–130 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. A. Sysoev
    • 1
  • V. V. Kondrat’ev
    • 1
  • T. I. Zimina
    • 1
  • A. I. Karlina
    • 1
  1. 1.Irkutsk National Research Technical UniversityIrkutskRussia

Personalised recommendations