Metallurgist

, Volume 61, Issue 5–6, pp 382–386 | Cite as

Physicochemical and Thermophysical Bases of Titanomagnetite Ore Treatment

Article
  • 33 Downloads

A basic reserve for reducing coke consumption and improving the technical and economic indices of blast-furnace smelting is improvement of iron-ore raw material quality. A procedure is considered for evaluating the effect of iron ore metallurgical property indices on blast-furnace smelting technical and economic indices. Examples are given for evaluation of sinter and pellet metallurgical properties form titanomagnetite concentrates.

Keywords

titanomagnetite raw material quality blast-furnace smelting 

Notes

This study was supported by the Russian Foundation for Basic Research (Project No. 16-08-00062) and a program of the Russian Academy of Sciences (Project No. 15-11-2345-27).

References

  1. 1.
    A. N. Dmitriev, “The role of reducibility in achievement of the minimal coke consumption in the blast furnace smelting,” Defect and Diff. Forum, 258260, 91–100 (2006).Google Scholar
  2. 2.
    A. N. Dmitriev, G. Yu. Vitkina, and Yu. A. Chesnokov, “Methodological basis of investigation of influence of the iron ore materials and coke metallurgical characteristics on the blast furnace smelting efficiency,” Adv. Mater. Res., 602604, 365–375 (2013).Google Scholar
  3. 3.
    A. V. Chentsov, Yu. A. Chesnokov, and S. V. Shavrin, Balanced Logic-Statistical Model of the Blast-Furnace Process, UrO RAN, Ekaterinburg (2003).Google Scholar
  4. 4.
    A. N. Dmintreev, Mathematical Modeling of The Blast-Furnace Process, UrO RAN, Ekaterinburg (2011).Google Scholar
  5. 5.
    A. N. Dmitriev, R. V. Petukhov, G. Yu. Vitkina, et. al., “The reduction processes of the titanium-containing iron ores treatment,” Defect and Diff. Forum. Diff. in Solids and Liquids XI, 369, 6–11 (2016).Google Scholar
  6. 6.
    S. A. Zagainov, S. V. Shavrin, O. P. Onorin, et al., “Analysis of NTMK blast furnace No. 6 operation and development of recommendations for improvement of smelting technology for vanadium iron,” Chern. Met.: Byull. NTiEI, No. 2, 92 (2007).Google Scholar
  7. 7.
    S. V. Filatov, A. A. Kirichkov, V. A. Mikhaev, et al., “Introduction of smelting technology for low-silicon iron in NTMK,” Stal, No. 5, 30–32 (2010).Google Scholar
  8. 8.
    V. A. Kushnarev, S. V. Filatov, V. V. Filippov, et al., “Work of the NTMK blast-furnace workshop after reconstruction,” Stal, No. 4, 24 (2010).Google Scholar
  9. 9.
    S. V. Filatov, V. V. Filippov, S. A. Zagainov, and B. S. Tleygabulov, “Results of introducing planned and production solutions in smelting low-silicon vanadium-containing iron,” Proc. Sci.-Tech. Conf. Problems and Prospects for Developing Metallurgy and Engineering Using Improved Fundamental Research and Scientific Research and Test Construction Work, UrO RAN, Ekaterinburg (2011), Vol. 1, pp. 146–151.Google Scholar
  10. 10.
    S. V. Filatov, I. F. Kurunov, L. A. Smirnov, et al., “Blast-furnace smelting conditions with a low iron silicon content,” Stal, No. 8, 7–10 (2013).Google Scholar
  11. 11.
    P. V. Gel’d and O. A. Esin, High-Temperature Reduction Processes, Gos. Nauch. Tekh. Izd. Lit. Chern. Tsvet. Met. (Sverdlovsk divis.) (1957).Google Scholar
  12. 12.
    A. N. Dmitriev, “Contemporary state, development prospects and assimilation of the base of Ural titanium-containing ores,” Chern. Met.: Byull. NTiEI, No. 12, 36–40 (2015).Google Scholar
  13. 13.
    G. G. Gavrilyuk, Yu. A. Lekontsev, and S. D. Abramov, Blast-Furnace Smelting of Titanium Magnetites, Assod, Tula (1997).Google Scholar
  14. 14.
    L. I. Leont’ev, N. A. Vatolin, S. V. Shavrin, and N. S. Shumakov, Pyrometallurgical Treatment of Complex Ores, Metallurgiya, Moscow (1997).Google Scholar
  15. 15.
    L. A. Smirnov, Yu. A. Deryabin, and S. V. Shavrin, Metallurgical Treatment of Titanium-Containing Titanomagnetites, Metallurgiya, Chelyabinsk (1990).Google Scholar
  16. 16.
    I. F. Kurunov, V. A. Shatlov, and A. I. Isteev, Ways of Improving Blast-Furnace Smelting Efficiency, Chermetinformatsiya, Moscow (1981).Google Scholar
  17. 17.
    V. A. Shatlov, A. A. Fofanov, A. N. Dmitriev, et al., Reduction in Coke Consumption in Blast Furnaces as a Result of More Complete Use of Gas Chemical Energy, Chermetinformatsdiya, Moscow (1983).Google Scholar
  18. 18.
    J. G. Pisi and V. G. Davenport, Blast Furnace Process, Theory and Practice [Russian transaltion], Metallurgiya, Moscow (1984).Google Scholar
  19. 19.
    V. N. Andronov, Minimum Possible Coke Consumption and the Effect on Various Blast-Furnace Smelting Factors, Izd. SbGTU, St. Petersburg (2001).Google Scholar
  20. 20.
    T. Ya. Malysheva, R. M. Pavlov, N. R. Mansurova, and T. V. Detkova, “Effect of natural ore formation on mineral composition and cold strength of fluxed iron-ore sinters,” Izv. Vyssh. Uchebn. Zaved., Chern. Met., 58, No. 3, 180–185 (2015).Google Scholar
  21. 21.
    Zhengwei Yu, Guanghui Lu, Tao Jiangу, еt al., “Effect of basicity on titanomagnetite concentrate sintering,” ISIJ Int., 55, No. 4, 907–909 (2015).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Institute of Metallurgy, Ural BranchRussian Academy of Sciences (Imet URO RAN)EkaterinburgRussia
  2. 2.Ural Federal UniversityEkaterinburgRussia

Personalised recommendations