Advertisement

Metallurgist

, Volume 61, Issue 5–6, pp 366–374 | Cite as

Automatic Tension Control in the Continuous Roughing Train of a Wide-Strip Hot-Rolling Mill

  • I. Yu. Andryushin
  • A. G. Shubin
  • A. N. Gostev
  • A. A. Radionov
  • A. S. Karandaev
  • V. R. Gasiyarov
  • V. R. Khramshin
Article

The automatic tension control system of the three-stand continuous roughing train of the 2000 hot-rolling mill at the Magnitogorsk Metallurgical Combine is analyzed. Deviations in interstand tension that are several-fold higher than the set values and inadmissible compression are detected. The causes of poor tension control are determined, such as a large error in measured roll pressure and short response time of the system. An improved method for automatic tension control is developed. It involves combining speed-difference tension control during free rolling and static-current tension control during multi-stand rolling on three stands. A functional block diagram of the system implementing the method is considered. Experimental data obtained on the 2000 mill are presented. The basic advantages of the system that demonstrate its efficiency are indicated.

Keywords

wide-strip hot-rolling mill continuous roughing train no tension automatic control experiments implementation 

References

  1. 1.
    A. A. Voskan’yants, Automated C ontrol of Rolling Processes, MGTU im. Baumana, Moscow (2010).Google Scholar
  2. 2.
    V. R. Khramshin, A. S. Karandaev, S. A. Evdokimov, et al., “Reduction of the dynamic loads in the universal stands of a rolling mill,” Metallurgist, 59, No. 3–4, 315–323 (2015), doi  https://doi.org/10.1007/s11015-015-0103-8.CrossRefGoogle Scholar
  3. 3.
    A. S. Karandaev, V. R. Khramshin, V. V. Galkin, and A. N. Gostev, “Improving the algorithm of matching the motor speeds of the roughing train of a hot-rolling mill,” Vest. Yuzh.-Ural. Gos. Univ., Ser. Energet., 16, No. 34 (251), 35–41 (2011).Google Scholar
  4. 4.
    A. S. Karandaev, V. R. Khramshin, A. A. Radionov, et al., “Matching the motor speeds of the continuous roughing train of a rolling mill,” Vest. Ivanov. Gos. Energ. Univ., No. 1, 98–103 (2013).Google Scholar
  5. 5.
    V. P. Bychkov, Electric Drive and Automation of Metallurgical Production, Vyssh. Shkola, Moscow (1977).Google Scholar
  6. 6.
    V. V. Bur’kov and athe speeds of the continuous train of stands of a hot-rolling mill to provide minimum interstand tension,” subm. 03.22.2002, publ. 02.20.2003, Byull., No. 5, http://ru-patent.info/21/95-99/2198753.html.
  7. 7.
    V. V. Galkin, S. A. Petryakov, A. S. Karandaev, and V. R. Khramshin, “Automatic correction of the thickness of the strip head section in the Hydraulic AGCS of a wide-strip hot-rolling mill,” Izv. VUZ., Elektromekh., No. 4, 46–50 (2011).Google Scholar
  8. 8.
    A. S. Karandaev, V. R. Khramshin, I. Yu. Andryushin, et al., “Method for correction of gauge interference of the head-strip section in a system for automated controlling of the thickness of a broad-strip hot-rolling mill,” Russ. Electr. Eng., No. 84 (8), 441–445 (2013).Google Scholar
  9. 9.
    V. R. Khramshin, S. A. Evdokimov, A. S. Karandaev, et al., “Algorithm of no-pull control in the continuous mill train,” in: Proc. Int. Siberian Conf. on Control and Communications, SIBCON-2015, Omsk State Techn. Univ., Omsk (2015), doi  https://doi.org/10.1109/SIBCON.2015.7147263.
  10. 10.
    A. S. Karandaev, V. R. Khramshin, I. Yu. Andryushin, et al., “Mathematical simulation of coupled electromechanical systems in the interstand section of a wide-strip hot-rolling mill,” Izv. VUZ., Elektromekh., No. 1, 12–20 (2009).Google Scholar
  11. 11.
    A. A. Radionov, A. S. Karandaev, A. S. Evdokimov, et al., “Mathematical simulation of coupled electromechanical systems of the continuous train of a rolling mill. Part 1: Development of a mathematical model,” Vest. Yuzh. Ural. Gos. Univ., Ser. Energet., 15, No. 1, 59–73 (2015).Google Scholar
  12. 12.
    A. A. Radionov, A. S. Karandaev, A. S. Evdokimov, et al., “Mathematical simulation of coupled electromechanical systems of the continuous train of a rolling mill. Part 2: Study of dynamic loads in universal stands,” Vest. Yuzh. Ural. Gos. Univ., Ser. Energet., 15, No. 2, 67–76 (2015).Google Scholar
  13. 13.
    A. A. Radionov, A. S. Karandaev, A. S. Evdokimov, et al., “Mathematical simulation of coupled electromechanical systems of the continuous train of a rolling mill. Part 3: Study of a method for matching the linear speeds of the vertical and horizontal rolls,” Vest. Yuzh. Ural. Gos. Univ., Ser. Energet., 16, No. 1, 47–55 (2016).Google Scholar
  14. 14.
    V. R. Khramshin, A. S. Karandaev, A. A. Radionov, et al., “Dynamic loads reduction of mechanical and electrical equipment of the hot rolling mill roughing train,” Mashinostr.: Set. Elektron. Nauch. Zh., No. 2, 69–77 (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • I. Yu. Andryushin
    • 1
  • A. G. Shubin
    • 1
  • A. N. Gostev
    • 1
  • A. A. Radionov
    • 2
  • A. S. Karandaev
    • 2
  • V. R. Gasiyarov
    • 2
  • V. R. Khramshin
    • 3
  1. 1.Magnitogorsk Metallurgical Combine (MMK)MagnitogorskRussia
  2. 2.South Ural Stat University (National Research University)ChelyabinskRussia
  3. 3.Nosov Magnitogorsk State Technical UniversityMagnitogorskRussia

Personalised recommendations