Advertisement

Metallurgist

, Volume 60, Issue 7–8, pp 786–801 | Cite as

Prediction of Carbon Liquation in Steel Forging Ingot Cross Section

  • A. N. Romashkin
  • V. S. Dub
  • D. S. Tolstykh
  • I. A. Ivanov
  • A. N. Mal’ginov
Article
  • 35 Downloads

Published experimental data about steel forging ingot chemical inhomogeneity with different steel weight and composition are summarized. An equation is obtained for calculating the carbon liquation factor over an ingot cross section in relation to weight and configuration (H/D ratio), and also on original carbon and sulfur content in cast steel.

Keywords

liquation segregation steel forging ingot chemical inhomogeneity 

References

  1. 1.
    B. Sang, X. Kang, and D. Li, “A novel technique for reducing macrosegregation in heavy steel ingots,” J. Mater. Process. Techn., 210, 703–711 (2010).CrossRefGoogle Scholar
  2. 2.
    K. Li, M. Wu, A. Ludwig, et al., “Modelling macrosegregation in a 2.45 ton steel ingot,” IOP Conf. Ser.: Mater. Sci. and Eng., 33 (2012).Google Scholar
  3. 3.
    “Report on the heterogeneity of steel ingots,” J. Iron Steel Inst., 103, 151 (1926).Google Scholar
  4. 4.
    H. Combeau, M. Zaloznik, S. Hans, et al., “Prediction of macrosegregation in steel ingots: infl uence of the motion and the morphology of equiaxed grains, “ Metall. Mater. Trans., 40B, 289–304 (2009).Google Scholar
  5. 5.
    I. N. Zigalo, K. S. Prosvirin, Ya. N. Malinochka, et al., Study of ingot structure formation by means of REM,” Stal, No. 8, 27–32 (1984).Google Scholar
  6. 6.
    D. Liu, X. Kang, B. Sang, et al., “Numerical study of macrosegregation formation of ingot cast in normal sand mold and water-cooled sand mold,” Acta Metall. Sin (Engl. Lett.), 24, No. 1, 34–64 (2011).Google Scholar
  7. 7.
    A. V. Kuksa, Cast Iron Steel-Pouring Molds, Metallurgiya, Moscow (1989).Google Scholar
  8. 8.
    B. G. Petukhov, “Effect of deoxidation versions on large ingot inhomogeneity,” Izv. Vyssh. Uchebn. Zaved., Chern. Met., No. 1, 35–38 (1969).Google Scholar
  9. 9.
    V. M. Senopal’nikov, G. A. Dubenets, and V. L. Sivkov, Control of Killed Steel Solidification Processes, NGTU, N. Novgorod (2009).Google Scholar
  10. 10.
    V. D. Solodovninov, Improvement of Smelting Technology and Degassing of Steel for Cold Rolling Rolls: Dissert. Cand. Techn. Sci., TsNIITMASh, Moscow (1988).Google Scholar
  11. 11.
    S. Onodera and Y. Arakida, “Effect of gravity on macrosegregation of larger steel ingots,” Indian Constr. News, No. 8, 358–368 (1959).Google Scholar
  12. 12.
    J. P. Gu and C. Beckermann, “Simulation of convection and macrosegregation in a large steel ingot,” Met. Mater. Trans., 30A, 1357–1366 (1999).CrossRefGoogle Scholar
  13. 13.
    D. V. Rutskii, N. A. Zyuban, and S. B. Gamanyuk, “Effect of ingot chemical and physical inhomogeneity for a ton steel 38KhN3MFA ingot on pipe billet mechanical properties,” Izv. Samrsk. Nauch. Tsentra RAN, 12, No. 1(2) 489–492 (2010).Google Scholar
  14. 14.
    M. Wu, J. Li, A. Kharicha, et al., “Using a three-phase mixed columnar-equiaxed solidification model to study macrosegregation in ingot castings: perspectives and limitations,” Proc. 2013 Symp. on Liquid Metal Processing and Casting, pp. 171–180.Google Scholar
  15. 15.
    P. Machovcaka, A. Oplera, M. Tkadleckovab, et al., “The utilization of numerical modeling to optimize the production of heavy forging ingots in Vítkovice heavy machinery a.s.,” 1st Int. Conf. on Ingot Casting, Rolling and Forging, Brüssel-Saal, June 6, 2012, pp. 1–8.Google Scholar
  16. 16.
    M. Tkadleckova, P. Machovcak, K. Gryc, et al., “Setting a numerical simulation of filling and solidification of heavy steel ingots based on real casting conditions,” Mater. Technol., 46, 399–402 (2012).Google Scholar
  17. 17.
    K. Nishiguchi, K. Nakanishi, K. Nakayama, et al., “Prediction on macro segregation in large forging ingots,” 13th Int. Forgemasters Meeting, Pusan, Korea, Oct. 12–16, 2001, pp. 57–70.Google Scholar
  18. 18.
    Makichi Tateno, “Development of large size high quality steels and their future prospects as ‘Near net shape’ material,” Trans. ISIJ., 25, No. 2, 97–108 (1985).CrossRefGoogle Scholar
  19. 19.
    Y. Ikeda, K. Morinaka, and T. Muraoka, “Recent technological progress on large ingots for rotor forgings,” 18th Int. Forgemasters Meeting, Pittsburgh, USA, Sept. 12–15, 2011, pp. 166–169.Google Scholar
  20. 20.
    A. P. Fomenko, Development and Study of Small Riser Ingot with Straight Conicity of Walls for Section Production: Auth. Abstr. Dissert. Cand. Tech. Sci., Bardin TsNIIchermet, Moscow (2007).Google Scholar
  21. 21.
    A. V. Mozgovoi, Optimization of Steel Pouring Parameters with Improved Axial Zone Properties for Large Section Rolling: Auth. Abstr. Dissert. Cand. Tech. Sci., Bardin TsNIIchermet, Moscow (2009).Google Scholar
  22. 22.
    A. M. Madyanov, “Control of steel solidifi cation in a mold during heavy forging ingot manufacture,” Proc. 2nd Meeting on Casting Process Theory, Metal Solidifi cation, Mashgiz, Moscow (1958), pp. 397–412.Google Scholar
  23. 23.
    V. A. Durynin and Yu. P. Solntsev, Study and Improvement of Production Technology with the Aim of Increasing Object Life of Large Forgings for Critical Purposes, KhimIzdat, St. Petersburg (2006).Google Scholar
  24. 24.
    V. S. Dub, A. N. Romashkin, A. N. Mal’ginov, et al., “Effect of ingot geometry on its chemical inhomogeneity, Parts 1 and 2,” Metallurg, No. 10, 25–33, No. 12, 19–26 (2013).Google Scholar
  25. 25.
    V. S. Dub, A. N. Romashkin, A. N. Mal’ginov, et al., “Study of the effect of forging ingot confi guration on chemical element distribution over the cross section,” Probl. Chern. Met. Materialved., No. 1, 5–19 (2014).Google Scholar
  26. 26.
    B. Chalmers, Solidifi cation Theory [Russian translation], Metallurgiya, Moscow (1968).Google Scholar
  27. 27.
    Yasuto Ikeda, Koji Morinaka, and Tomohiro Muraoka, “Recent technological progress on large ingots for rotor forgings,” IFM, 166–169 (2011).Google Scholar
  28. 28.
    V. S. Dub, A. N. Romashkin, E. V. Makarycheva, et al., “Mehtod for developing production technology for forging ingots,” Tyazh. Mashinostr., No. 7, 13–20 (2012).Google Scholar
  29. 29.
    V. V. Nazaratin, A. N. Romashkin, I. A. Ivanov, and A. N. Mal’ginov, “Procedure for planning forging ingots without axial shrinkage defects,” Metallurg. Mashinostr., No. 3, 40–52 (2010).Google Scholar
  30. 30.
    T. I. Titova, D. V. Ratushev, S. A. Bocharov, et al., “Development and introduction of resource saving technology for producing large billets from a hollow ingot,” 14th MNTK, Problems of Materials Science with Planning Manufacture and Operation of NPP Equipment, St. Petersburg (2016).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. N. Romashkin
    • 1
  • V. S. Dub
    • 1
  • D. S. Tolstykh
    • 1
  • I. A. Ivanov
    • 1
  • A. N. Mal’ginov
    • 1
  1. 1.Scientific and Production Association Central Research Institute of Machine Building Technology (NPO TsNIITMASh)MoscowRussia

Personalised recommendations