Skip to main content
Log in

A Weldability Study of Al–Cu–Li 2198 Alloy

  • Published:
Metallurgist Aims and scope

Al–Cu–Li alloys, conceived for automotive and aeronautic applications thanks to the high mechanical resistance/density ratio, exhibit weldability issues common to all light alloys. In this paper, the weldability of Al–Cu–Li 2198 alloy was studied by comparing features of welds carried out by two processes, the traditional arc welding and the friction stir welding (FSW). Welded joints were submitted to optical and SEM metallographic examinations with EDS microanalysis measurements. Mechanical characteristics were evaluated through microhardness tests and the instrumented indentation test FIMEC (Flat-top cylinder Indenter for MEchanical Characterization).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. T. Holt, A. K. Koul, L. Zhao, et al., “Lightweight materials for aircraft applications,” Mater. Charact., 35, No. 1, 41–67 (1995).

    Article  Google Scholar 

  2. V. Wagner, “Evoluzione delle leghe di alluminio per aeronautica dopo le due guerre mondiali,” Metall. Ital., No. 6, 9–21 (2005).

    Google Scholar 

  3. T. Warner, “Recently-developed aluminium solutions for aerospace applications,” Mater. Sci. Forum, 519/521, 1271–1278 (2006).

    Article  Google Scholar 

  4. K. S. Kumar, S. A. Brown, and J. R. Pickens, “Microstructural evolution during aging of an Al–Cu–Li–Ag–Mg–Zr alloy,” Acta Mater., 44, No. 5, 1899–1915 (1996).

    Article  Google Scholar 

  5. S. P. Ringer and K. Hono, “Microstructural evolution and age hardening in aluminium alloys: atom probe field – ion microscopy and trasmission electron microscopy studies,” Mater. Charact., 44, 101–131 (2000).

    Article  Google Scholar 

  6. J. Ehrström and T. Warner, “Metallurgical design of alloys for aerospace structures,” Mater. Sci. Forum, 331/337, 5–16 (2000).

    Article  Google Scholar 

  7. A. Heinz, A. Haszler, C. Keidel, et al., “Recent development in aluminium alloys for aerospace applications,” Mater. Sci. Eng. A, 280, No. 1, 102–107 (2000).

    Article  Google Scholar 

  8. L. Bonaccorsi, G. Costanza, S. Missori, and M. E. Tata, “Mechanical and metallurgical characterization of 8090 Al–Li alloy welded joints,” Metallurgist, 56, No. 1–2, 75–84 (2012).

    Article  Google Scholar 

  9. B. Irving, “Welding the four most popular aluminium alloys,” Weld. Int., 73, No. 2, 51–55 (1994).

    Google Scholar 

  10. A. Kostrivas and J. C. Lippold, “Weldability of Li-bearing aluminium alloys,” Int. Mater. Rev., 44, No. 6, 217–237 (1999).

    Article  Google Scholar 

  11. G. D. Janaki Ram, T. K. Mitra, M. K. Raju, and S. Sundaresan, “Use of inoculants to refine weld solidification structure and improve weldability in type 2090 Al–Li alloy,” Mater. Eng., A276, 48–57 (2000).

    Article  Google Scholar 

  12. G. O. Rading, M. Shamsuzzoha, and J. T. Berry, “A model for HAZ hardness profiles in Al–Li–X alloys: application to the Al–Li–Cu alloy 2095,” Weld. J., 77, No. 9, 382s–387s (1998).

    Google Scholar 

  13. S. Missori and A. Sili, “Mechanical and microstructural properties of 8090 Al–Li alloy welded joints,” Metall. Sci. Technol., 20, No. 2, 22–26 (2002).

    Google Scholar 

  14. P. Vilaca and W. Thomas, “Friction stir weldig technology,” in: Structural Connections for Lightweight Metallic Structures, P. Moreira, L. da Silva, and P. de Castro (eds.), Advanced Structured Materials Ser., Springer-Verlag, Berlin, Heidelberg (2012), Vol. 8, pp. 85–124

    Chapter  Google Scholar 

  15. P. Cavaliere, E. Cerri, and P. Leo, “Evoluzione meccanica e microstrutturale di una lega di alluminio 7075 saldata per friction stir welding,” Metall. Ital., No. 6, 33–39 (2005).

    Google Scholar 

  16. J. Adamowski and M. Szkodo, “Friction Stir Welding (FSW) of aluminium alloy AW6082-T6,” J. Achieve. Mater. Manuf. Eng., 20, No. 1–2, 403–406 (2007).

    Google Scholar 

  17. K. Mroczka and A. Pietras, “FSW characterizations of 6082 aluminium alloys sheets,” Arch. Mater. Sci. Eng., 40, No. 2, 104–109 (2009).

    Google Scholar 

  18. A. Donato, P. Gondi, R. Montanari, et al., “A remotely operated FIMEC apparatus for the mechanical characterization of neutron irradiated materials,” J. Nucl. Mater., 258–263, 446–451 (1998).

    Article  Google Scholar 

  19. C. Bitondo, U. Prisco, A. Squillace, et al., “Friction stir welding of AA2198-T3 butt joints for aeronautical applications,” Int. J. Mater. Form, 3, Suppl. 1, 1079–1082 (2010).

    Article  Google Scholar 

  20. B. Decreus, A. Deschamps, and P. Donnadieu, “Understanding the mechanical properties of 2198 Al–Li–Cu alloy in relation with the intragranular and inter-granular precipitate microstructure,” J. Physics: Conf. Ser., 240, 012096 (2010).

    Google Scholar 

  21. Li Cuia et al., “Effect of Nd:YAG laser welding on microstructure and hardness of an Al–Li based alloy,” Mater. Charact., 71, 95–102 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calogero, V., Costanza, G., Missori, S. et al. A Weldability Study of Al–Cu–Li 2198 Alloy. Metallurgist 57, 1134–1141 (2014). https://doi.org/10.1007/s11015-014-9858-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-014-9858-6

Keywords

Navigation