Advertisement

Metallurgist

, Volume 52, Issue 5–6, pp 314–318 | Cite as

Self-organizing phenomena in bainite steels

  • V. P. Kopaleishvili
  • I. G. Kashakashvili
  • L. B. Kereselidze
  • O. G. Ioseliani
Article
  • 36 Downloads

Abstract

Based on an analysis of existing data and our own research results, we made the following scientific hypothesis: a decrease in the lattice parameter for iron due to the effect of two factors — negative temperatures and silicon content — for ttest < tSi and [Si] > 2.2% causes embrittlement of the iron (KCU = 0 J/cm2) due to dominance of covalent forces. By causing the regular occurrence of new covalent binding forces between iron atoms, silicon contents in excess of the [Si] > 0.50% threshold in iron and Fe-C bainite alloys give rise to subsequent self-organizing phenomena, the development of new bifurcations (abrupt increases in hydrogen solubility and in the amount of austenite in the alloy; formation of two supersaturated solid solutions 〈α+γ〉; occurrence and reversal of “rejuvenation”). This hypothesis provides scientific explanations not only for the processes described above, but also for processes related to graphitization, weldability, floccene formation, achievement of high strength, etc. This scientific hypothesis will become the basis for new approaches in existing areas, e.g., for development of iron-based hydrogen-storage alloys (HSAs).

Keywords

Bainite Silicon Content Residual Austenite Bainite Steel Compressor Pipe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Houdremont, Handbuch der Sonderstahlkunde, Springer, Berlin (1956) [Russian translation: Special Steels, Vol. 2, Metallurgiya, Moscow, pp. 737–1274 (p. 971, Fig. 762) (1966)].Google Scholar
  2. 2.
    S. S. Nosyreva, “Floccene formation mechanism,” Stal’, No. 1, 49–52 (1947).Google Scholar
  3. 3.
    A. P. Gulyaev et al., High-Strength Rebar Steel [in Russian], Metallurgiya, Moscow (1966), 134 pp.Google Scholar
  4. 4.
    A. P. Gulyaev, M. A. Volkova, N. P. Kozlov, et al., “Change in plastic properties as a function of time after hot rolling of 20KhG2Ts steel,” in: Special Steels and Alloys: Collected Papers from the I. P. Bardin Central Scientific Research Institute for Ferrous Metallurgy, Metallurgiya, Moscow, No. 52, pp. 34–37 (1967).Google Scholar
  5. 5.
    Yu. P. Archakov and I. D. Grebeshkova, “On the nature of the hydrogen embrittlement of steel,” Metalloved. Termich. Obrab. Met., No. 8, 2–7 (1985).Google Scholar
  6. 6.
    I. I. Novikov, Theory of the Heat Treatment of Metals, Metallurgiya, Moscow, pp. 279–287 (1986) [Transl. of revised 2nd Russian edition, 1974: Mir, Moscow (1978)].Google Scholar
  7. 7.
    A. P. Gulyaev, Physical Metallurgy, 6th revised ed., Metallurgiya, Moscow (1986), 542 pp [Trans. of revised 5th Russian ed.: Mir, Moscow (1980)].Google Scholar
  8. 8.
    G. V. Kurdyumov, A. M. Utevskii, and R. N. Éntin, Transformations in Iron and Steel [in Russian], Nauka, Moscow (1977), 236 pp.Google Scholar
  9. 9.
    V. P. Kopaleishvili and I. G. Kashakashvili, “Synergetic (Self-Organizing) Phenomena in Bainite Fe-C Alloys,” Nauchn. Tr. Gruzinsk. Tekhnichesk. Univ., No. 5 (438), 27–32 (2001).Google Scholar
  10. 10.
    V. P. Kopaleishvili, I. G. Kashakashvili, and L. B. Kereselidze, “Synergetic processes in bainite Fe-C alloys as a function of threshold value of silicon,” in: Proceedings of the VIIth Science and Engineering Conference on Problems in Metallurgy, Physical Metallurgy, and Welding (Tbilisi, October 8–11, 2002) [in Russian], pp. 16–33 (2002).Google Scholar
  11. 11.
    V. P. Kopaleishvili, I. G. Kashakashvili, and L. B. Kereselidze, “Synergetic (Self-Organizing) Phenomena in Bainite Fe-C Alloys and Techniques for Practical Application of Such Phenomena,” Nauchn. Tr. Gruzinsk. Tekhnichesk. Univ., No. 2 (448), 136–140 (2003).Google Scholar
  12. 12.
    V. P. Kopaleishvili, P. A. Tsereteli, A. N. Lomashvili, et al., USSR Inventor’s Certificate 1208090, “Medium-carbon low-alloy steel for high-strength oil pipe,” Byull. Izobr., No. 4 (1986).Google Scholar
  13. 13.
    V. P. Kopaleishvili, F. N. Tavadze, O. T. Ioseliani, et al., USSR Inventor’s Certificate 1382862, “Method for production of rolled metal,” Byull. Izobr., No. 11 (1988).Google Scholar
  14. 14.
    V. P. Kopaleishvili, R. A. Tkhelidze, D. M. Kharadze, et al., USSR Inventor’s Certificate 1615197, “Method for fabrication of piercer plugs,” Byull. Izobr. No. 47 (1990).Google Scholar
  15. 15.
    V. P. Kopaleishvili (Principal Investigator), A Study of the Effect of Various Factors on Breakdown of Materials: Scientific Research Report (Final), V. I. Lenin Georgian Polytechnical Institute GR 01850027163, Inv. No. 02850037007, Tbilisi (1980), 148 pp.Google Scholar
  16. 16.
    V. P. Kopaleishvili (Principal Investigator), A Study of the “Rejuvenation” Process: Scientific Research Report (Final), Georgian Polytechnical Institute (1992), 91 pp.Google Scholar
  17. 17.
    G. Schulze, Metallphysik, Akademie-Verlag, Berlin (1967) [Russian translation: Mir, Moscow (1971)].Google Scholar
  18. 18.
    V. A. Fin’kel, Physics of Fracture [in Russian], Metallurgiya, Moscow (1970), 376 pp.Google Scholar
  19. 19.
    L. Pauling, General Chemistry, W. H. Freeman, San Francisco (1970) [Russian translation: Mir, Moscow (1974), 846 pp.].Google Scholar
  20. 20.
    J. N. Murrell, S. F. A. Kettle, and J. M. Tedder, Valence Theory, Wiley, New York (1965) [Russian translation: Mir, Moscow (1969), 520 pp.].Google Scholar
  21. 21.
    R. Ripan and I. Ceteanu, Manual de Lucrari Practice de Chimie Anorganica, Editura de Stat Didactica si Pedagogica (1961) [Translated into Russian under the title Inorganic Chemistry, Mir, Moscow pp. 71–21 (1971)].Google Scholar
  22. 22.
    Ya. A. Ugai, General and Inorganic Chemistry [in Russian], Vysshaya Shkola, Moscow (1997), 432 pp.Google Scholar
  23. 23.
    V. K. Grigorovich, The Metallic Bond and Structure of Metals, Nauka, Moscow (1988), 295 pp. [Nova Science Publishers, Commack, N.Y. (1989)].Google Scholar
  24. 24.
    V. A. Mes’kin, Fundamentals of Steel Alloying [in Russian], Metallurgiya, Moscow (1964), 684 pp. [Fundamentals of Steel Alloying (selected parts) (1961)].Google Scholar
  25. 25.
    M. I. Yakovlev, E. S. Pestrev, and A. D. Andreev, “Cold-resistant cast-iron with spheroidal graphite,” Liteinoe Proizvodstvo, No. 3, 6–7 (2001).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • V. P. Kopaleishvili
    • 1
  • I. G. Kashakashvili
    • 1
  • L. B. Kereselidze
    • 1
  • O. G. Ioseliani
    • 1
  1. 1.Georgian Technical UniversityTbilisiGeorgia

Personalised recommendations