Skip to main content
Log in

New solutions to the central force problem: a class of generalized conic trajectories

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

New solutions to the central force problem are detailed. These solutions correspond to a class of curves which is obtained by the generalization of a geometric property of conics. This class contains a wide variety of well-known curves and in particular admits the logarithmic spiral as a limiting case. The determination of the law of central force is made by using Siacci’s theorem. This law allows us to link in a single relation the linear, inverse square and inverse cubic forces. New trajectories and corresponding analytic solutions are provided. The results are relevant to the fields of celestial mechanics and orbital dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data used in the paper are given in the reference part: MATHCURVE.COM. Cardioide (https://mathcurve.com/courbes2d/cardioid/cardioid.shtml). Construction de la tangente en un point—GeoGebra (https://www.geogebra.org/m/uQUTjSvP#material/mvvQjNVj). Construction à la règle et au compas de la tangente à une ellipse, sans utiliser les foyers (pagesperso-orange.fr) http://alain.pichereau.pages.perso-orange.fr.

References

  1. Lynden-Bell D, Jin S (2008) Analytic central orbits and their transformation group. Mont Not R Astron Soc 386(1):245–260

    Article  Google Scholar 

  2. Hall RW, Josi KS (2000) Planetary motion and the duality of force laws. SIAM Rev 42(1):115–124

    Article  MathSciNet  Google Scholar 

  3. Collas P (1981) Equivalent potentials in classical physics. J Math Phys 22:2512

    Article  MathSciNet  MATH  Google Scholar 

  4. Lynden-Bell D, Jin S (1997) On the shapes of Newton’s revolving orbits. Not R Astron Soc 51(2):195–198

    MathSciNet  MATH  Google Scholar 

  5. Akopyan AV, Zaslavsky AA (2007) Geometry of conics. Am Math Soc Math World 26:8–9

    MathSciNet  Google Scholar 

  6. Lebossé C, Hémery C (1965) Géométrie, classe de mathématiques, Fernand Nathan, 23e leçon: foyers et directrices, propriétés diverses, n° 603, p 409

  7. Cardioide (mathcurve.com) Robert Ferreol (2020)

  8. Construction de la tangente en un point-GeoGebra Author: Rousseau-Wallon

  9. Construction à la règle et au compas de la tangente à une ellipse, sans utiliser les foyers (pagesperso-orange.fr). http://alain.pichereau.pages.perso-orange.fr

  10. Nauenberg M (2018) Newton’s graphical method for central force orbit. Am J Phys 86:765

    Article  Google Scholar 

  11. Siacci F (1879) Del moto per una linea piana. Atti R Accad Sci Torino 14:946–951

    MATH  Google Scholar 

  12. Whittaker ET (1937) A treatise on the analytical dynamics of particles and rigid bodies, 4th edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  13. Casey J (2011) Siacci’s resolution of the acceleration vector for a space curve. Meccanica 46:471–476

    Article  MathSciNet  MATH  Google Scholar 

  14. Danby JMA (1962) Fundamental of celestial mechanics. MacMillan, New York

    Google Scholar 

  15. Bertrand J (1873) Théorème relatif au mouvement d’un point attiré vers un centre fixe. C R Acad Sci Paris 77:849

    MATH  Google Scholar 

  16. Broucke R (1981) Notes on the central forces. Astrophys Space Sci 72:33–53

    Article  MathSciNet  Google Scholar 

  17. Mahomed FM, Vawda F (2000) Applications of symmetries to central force problems. Nonlinear Dyn 21:307–315

    Article  MathSciNet  MATH  Google Scholar 

  18. Roa J, Pelàez J, Senent J (2016) New analytic solution with continuous thrust: generalized logarithmic spirals. J Guid Control Dyn 39(10):2336–2351

    Article  Google Scholar 

  19. Roa J (2016) Nonconservative extension of Keplerian integrals and a new class of integrable system. MNRAS 463(3):3204–3219

    Article  Google Scholar 

  20. Bacon RH (1959) Logarithmic spiral: an ideal trajectory for the interplanetary vehicle with engines of low sustained thrust. Am J Phys 27:164

    Article  MATH  Google Scholar 

  21. Adkins GS, McDonnell J (2007) Orbital precession due to central-force perturbations. Phys Rev D 75:082001

    Article  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the anonymous reviewer for constructive criticism and stimulating observations. His (her) contribution was important in improving the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Guiot.

Ethics declarations

Prepublication

A part of the results are prepublished under another title on the web site HAL Dynamics of Generalized Conic Trajectories - Archive ouverte HAL (archives-ouvertes.fr).

Conflict of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guiot, E. New solutions to the central force problem: a class of generalized conic trajectories. Meccanica 58, 1511–1522 (2023). https://doi.org/10.1007/s11012-023-01682-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-023-01682-1

Keywords

Navigation