Skip to main content
Log in

Stability analysis from higher order nonlinear Schrödinger equation for interfacial capillary-gravity waves

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A higher order current modified nonlinear Schrödinger equation (NLSE) in the case of broader bandwidth capillary-gravity waves travelling on the interface between two fluids extending to infinity is derived. This equation is extended by relaxing the narrow bandwidth restriction so that it will be more suitable for application to a realistic ocean wave spectrum. From the narrow and broader-banded evolution equations, the two-dimensional instability regions are plotted for different values of density ratio of two fluids, wave steepness, the non-dimensional velocity of the upper fluid and the surface tension coefficient. The instability regions corresponding to both an air-water interface and a Boussinesq approximation are also presented. It is important to note that the new broader-banded equation is found to predict an instability region in good agreement with the exact numerical results. The effect of surface tension is to expand the instability region in the perturbed wave numbers plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Benjamin BT, Feir JE (1967) The disintegration of wave trains on deep water Part 1. Theory. J Fluid Mech 27(3):417–430. https://doi.org/10.1017/S002211206700045X

    Article  MATH  Google Scholar 

  2. Benney DJ, Newell AC (1967) The propagation of nonlinear wave envelopes. J Math Phys 46(1–4):133–139

    Article  MathSciNet  MATH  Google Scholar 

  3. Zakharov VE (1972) Stability of periodic waves of finite amplitude on the surface of a deep fluid. J Appl Mech Tech Phys 9(2):190–194. https://doi.org/10.1007/BF00913182

    Article  Google Scholar 

  4. Hasimoto H, Ono H (1972) Nonlinear modulation of gravity waves. J Phys Soc Jpn 33(3):805–811. https://doi.org/10.1143/JPSJ.33.805

    Article  Google Scholar 

  5. Yuen Henry C (1984) Nonlinear dynamics of interfacial waves, 12, 71-82

  6. Bliven LF, Huang NE, Long SR (1986) Experimental study of the influence of wind on Benjamin-Feir sideband instability. J Fluid Mechanics 162:237–260 (ISSN 0022-1120)

    Article  Google Scholar 

  7. Grimshaw RHJ, Pullin DI (1985) Stability of finite-amplitude interfacial waves. Part 1. Modulational instability for small-amplitude waves. J Fluid Mech 160:297–315. https://doi.org/10.1017/S0022112085003494

    Article  MathSciNet  MATH  Google Scholar 

  8. Pullin DI, Grimshaw RHJ (1985) Stability of finite-amplitude interfacial waves. Part 2. Numerical results. J Fluid Mech 160:317–336

    Article  MathSciNet  Google Scholar 

  9. Pullin DI, Grimshaw RHJ (1986) Stability of finite-amplitude interfacial waves. Part 3. The effect of basic current shear for one-dimensional instabilities. J Fluid Mech 172:277–306. https://doi.org/10.1017/S002211208600174X

    Article  MathSciNet  MATH  Google Scholar 

  10. Dysthe KB (1979) Note on a modification to the nonlinear Schriidinger equation for application to deep water waves. Proc Roy Sot Imd Sel A 369:105–114

    MATH  Google Scholar 

  11. Dhar AK, Das KP (1994) Stability analysis from fourth order evolution equation for small but finite amplitude interfacial waves in the presence of a basic current shear’’, The Journal of the Australian Mathematical Society. Series B Appl Math 35(3):348–365. https://doi.org/10.1017/S0334270000009346

    Article  MATH  Google Scholar 

  12. Dhar AK, Das KP (1991) Stability of small but finite amplitude interfacial waves. Mech Res Commun 18(6):367–372

    Article  MATH  Google Scholar 

  13. Dhar AK, Das KP (1990) Fourth-order evolution equation for deep water surface gravity waves in the presence of wind blowing over water. Phys Fluids A 2(5):778–783

    Article  MATH  Google Scholar 

  14. Majumder DP, Dhar AK (2011) Stability of small but finite amplitude interfacial capillary gravity waves for perturbations in two horizontal directions. Int J Appl Mech Eng 16(2):425–434

    Google Scholar 

  15. Trulsen Karsten, Dysthe Kristian B (1996) A modified nonlinear Schrtidinger equation for broader bandwidth gravity waves on deep water. Wave Motion 24:281–289

    Article  MathSciNet  MATH  Google Scholar 

  16. Hogan SJ (1985) The fourth-order evolution equation for deep-water gravity-capillary waves. Proc. R Soc Lond. A402359–372 https://doi.org/10.1098/rspa.1985.0122

  17. McLean JW, Ma YC, Martin DU, Saffman PG, Yuen HC (1981) Three-dimensional instability of finite-amplitude water waves. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.46.817

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are greatful to the reviewers for their useful comments for improving the manuscript. The first author greatfully acknowledges IIEST, Shibpur, India, for providing him the Institute fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Dhar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned}{} & {} \mu _1=\frac{E-\frac{3\kappa }{2}}{4f_\omega }, ~\mu _2=\frac{C-Dc_g+16\omega (1+r)c_gr_1+18\kappa }{4f_\omega },\\{} & {} \quad \mu _3=\frac{E-8\omega (1+r)c_gr_1+12\kappa (1+\kappa )(2\kappa -1)}{16f_\omega },~\mu _4=\frac{A}{f_\omega },\\{} & {} \quad \gamma _1=\frac{Q}{f_{\omega }^3},~\gamma _2=\frac{1-r+3\kappa }{2f_{\omega }},~\gamma _3=\frac{2PQ-\kappa f_{\omega }^4}{f_{\omega }^5},\\{} & {} \quad \gamma _4=\frac{(1-r)(f_{\omega }^2-2P)-3\kappa (f_{\omega }^2+2P)}{2f_{\omega }^3},\\{} & {} \quad \gamma _5=\frac{4P^2Q+(1+r)\{(Pf_k+r u(f_k+uf_\omega )f_\omega )^2+3\kappa (3\kappa f_\omega -2r u(f_k+uf_\omega ))f_\omega ^3-6\kappa Pf_kf_\omega ^2-2P\kappa f_\omega ^4 \} }{f_{\omega }^7},\\{} & {} \quad \gamma _6=\frac{P\{(1-r-3\kappa )f_\omega ^2-(1-r+3\kappa )(2P+(1+r)f_k) \} -(1-r+3\kappa )(1+r)f_\omega \{r uf_k+(r u^2-3\kappa )f_\omega \}-\frac{(1-r)f_\omega ^4}{2}}{f_\omega ^5},\\{} & {} \quad \gamma _7=\frac{2(1+r)(1-r+3\kappa )^2+(1-r-3\kappa )f_\omega ^2}{8f_\omega ^3},\\{} & {} \quad \gamma _8=\frac{-2PQ\{4P^2 +3(1+r)Q\}+4Q\kappa (1+r)f_\omega ^4+4r u P\kappa f_\omega ^5+2\kappa (1+r)\{(1+r)f_k^2-(r u^2-3\kappa )f_\omega ^2 \}f_\omega ^4}{f_\omega ^9},\\{} & {} \quad \gamma _9=\frac{(1-r+3\kappa )\{4P^3+6PQ(1+r)-(1+r)\kappa f_\omega ^4\} -(1-r-3\kappa )\{(1+r)Qf_\omega ^2+2P^2f_\omega ^2 \}+(1-r)(Pf_\omega ^4-\frac{f_\omega ^6}{2})}{f_\omega ^7},\\{} & {} \quad \gamma _{10}=\frac{ 2(1-r-3\kappa )\{2(1+r)(1-r+3\kappa )-P\}f_\omega ^2-12P(1+r)(1-r+3\kappa )^2+3f_\omega ^4(1-r-\kappa ) }{8f_\omega ^5}, ~~\text {where}\\{} & {} \quad A=\omega ^2+r(\omega -u)^2,~B=\omega ^2-r(\omega -u)^2,\\{} & {} \quad C=-2[A+2\{\omega ^2+r(\omega -u)(\omega -2u)\}\\{} & {} \qquad +\frac{\{3\omega ^2-r(\omega -u)(3\omega -7u)\}B}{(1-r-2\kappa )}\\{} & {} \qquad +\frac{\{1-r+4r u(\omega -u)+12\kappa \}B^2}{(1-r-2\kappa )^2}],\\{} & {} \quad D=4\left[ \{\omega +r(\omega -u)\}\{1-\frac{2B^2}{(1-r-2\kappa )^2}\}\right. \\{} & {} \left. \qquad +\frac{2\{\omega -r(\omega -u)\}B}{1-r-2\kappa } \right] , ~E=2\left[ A+\frac{B^2}{(1-r-2\kappa )} \right] ,\\{} & {} \quad P=(1+r)f_k+r uf_{\omega },\\{} & {} \quad Q=(1+r)f_k^2+2r uf_k f_{\omega }+(r u^2-3\kappa )f_{\omega }^2,~f_k\\{} & {} \quad =\frac{\partial f}{\partial k},~f_{\omega }=\frac{\partial f}{\partial \omega },~c_g=-\frac{f_k}{f_\omega }. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manna, S., Dhar, A.K. Stability analysis from higher order nonlinear Schrödinger equation for interfacial capillary-gravity waves. Meccanica 58, 687–698 (2023). https://doi.org/10.1007/s11012-023-01638-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-023-01638-5

Keywords

Navigation