Skip to main content
Log in

Effects of the rotation of the central black hole in a disk galaxy model

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The orbital properties of stars moving on the (Rz) plane of a disk galaxy with a central rotating black hole are numerically investigated. For modeling the dynamical system, we use a pseudo-Newtonian potential that can replicate specific physical properties of a rotating distribution of matter, such as the position of the marginally bound orbit and the radius of the last stable orbit for the Kerr metric. Massive sets of starting conditions are classified for determining the dynamics of the test particle’s trajectories. Specifically, we manage not only to distinguish regular, chaotic, and collisional motion but also categorize all regular trajectories into regular families. The orbit taxonomy suggests that the angular momentum of the central black hole has a profound influence on the orbital properties of the galaxy. In particular, we find that stars having energies that correspond to motion relatively close to the black hole are highly affected by its rotation, while stars moving at large galactocentric distances are less influenced by the same parameter. In addition, it is numerically demonstrated that the appearance of certain resonant orbits is due to the rotation of the central black hole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Graham AW (2016) Galaxy bulges and their massive black holes: a review. Galactic Bulges, 263-313

  2. Laha S, Reynolds CS, Reeves J et al (2021) Ionized outflows from active galactic nuclei as the essential elements of feedback. Nature Astron 5:13–24

    Article  Google Scholar 

  3. Ferrarese L, Merritt DA (2000) Fundamental relation between supermassive black holes and their host galaxies. Astrophys J Lett 539(1):L9

    Article  Google Scholar 

  4. Ciotti L, Ostriker JP (2007) Radiative feedback from massive black holes in elliptical galaxies: AGN flaring and central starburst fueled by recycled gas. Astrophys J Lett 665(2):1038

    Article  Google Scholar 

  5. Cen R (2012) Physics of coevolution of galaxies and supermassive black holes. Astrophys J Lett 755(1):28

    Article  Google Scholar 

  6. Storchi-Bergmann T, Schnorr-Müller A (2019) Observational constraints on the feeding of supermassive black holes. Nature Astron 3(1):48–61

    Article  Google Scholar 

  7. Volonteri M, Sikora M, Lasota JP, Merloni A (2013) The evolution of active galactic nuclei and their spins. Astrophys J Lett 775(2):94

    Article  Google Scholar 

  8. Reynolds CS (2021) Observational constraints on black hole spin. Annual Rev Astron Astrophys 59:117–154

    Article  Google Scholar 

  9. Kerr RP (1963) Gravitational field of a spinning mass as an example of algebraically special metrics. Phys Rev Lett 11:237

    Article  MathSciNet  MATH  Google Scholar 

  10. Thorne KS, Misner CW, Wheeler JA (2000) Gravitation. Freeman, USA

    Google Scholar 

  11. Fiacconi D, Sijacki D, Pringle JE (2018) Galactic nuclei evolution with spinning black holes: method and implementation. Monthly Notices R Astron Soc 477(3):3807–3835

    Article  Google Scholar 

  12. Griffin AJ, Lacey CG, Gonzalez-Perez V, Lagos CDP, Baugh CM, Fanidakis N (2019) The evolution of SMBH spin and AGN luminosities for \(z <6\) within a semi-analytic model of galaxy formation. Monthly Notices R Astron Soc 487(1):198–227

    Article  Google Scholar 

  13. Bustamante S, Springel V (2019) Spin evolution and feedback of supermassive black holes in cosmological simulations. Monthly Notices R Astron Soc 490(3):4133–4153

    Article  Google Scholar 

  14. Berentzen I, Preto M, Berczik P, Merritt D, Spurzem R (2009) Binary black hole merger in galactic nuclei. Astrophys J 695(1):455

    Article  Google Scholar 

  15. Rantala A, Pihajoki P, Johansson PH, Naab T, Lahén N, Sawala T (2017) Post-Newtonian dynamical modeling of supermassive black holes in galactic-scale simulations. Astrophys J 840(1):53

    Article  Google Scholar 

  16. Paczynsky B, Wiita PJ (1980) Thick accretion disks and supercritical luminosities. Astron Astrophys 88:23–31

    MathSciNet  Google Scholar 

  17. Steklain AF, Letelier PS (2006) Newtonian and pseudo-Newtonian Hill problem. Phys Lett A 352(4):398–403

    Article  MathSciNet  MATH  Google Scholar 

  18. Dubeibe FL, Lora-Clavijo FD, González GA (2017) Pseudo-Newtonian planar circular restricted 3-body problem. Phys Lett A 381:563–567

    Article  MathSciNet  MATH  Google Scholar 

  19. Zotos EE, Dubeibe FL, Nagler J, Tejeda E (2019) Orbit classification in a pseudo-Newtonian Copenhagen problem with Schwarzschild-like primaries. MNRAS 487:2340–2353

    Article  Google Scholar 

  20. Zotos EE, Dubeibe FL, González GA (2018) Orbit classification in an equal-mass non-spinning binary black hole pseudo-Newtonian system. MNRAS 477(4):5388–5405

    Article  Google Scholar 

  21. Hawley JF, Krolik JH (2001) Global MHD simulation of the inner accretion disk in a pseudo-Newtonian potential. Astrophys J 548(1):348

    Article  Google Scholar 

  22. Zotos EE, Dubeibe FL, Steklain AF, Saeed T (2020) Orbit classification in a disk galaxy model with a pseudo-Newtonian central black hole. Astron Astrophys 643:A33

    Article  Google Scholar 

  23. Mukhopadhyay B, Misra R (2003) Pseudo-Newtonian potentials to describe the temporal effects on relativistic accretion disks around rotating black holes and neutron stars. Astrophys J 582(1):347

    Article  Google Scholar 

  24. Ivanov RI, Prodanov EM (2005) Pseudo-Newtonian potential for charged particle in Kerr-Newman geometry. Phys Lett B 611(1–2):34–38

    Article  Google Scholar 

  25. Ghosh S, Mukhopadhyay B (2007) Generalized pseudo-Newtonian potential for studying accretion disk dynamics in off-equatorial planes around rotating black holes: Description of a vector potential. Astrophys J 667(1):367

    Article  Google Scholar 

  26. Artemova IV, Björnsson G, Novikov ID (1996) Modified Newtonian potentials for the description of relativistic effects in accretion disks around black holes. Astrophys J 461:565

    Article  Google Scholar 

  27. Semerák O, Karas V (1999) Pseudo-Newtonian models of a rotating black hole field. Astron Astrophys 343:325–332

    Google Scholar 

  28. Mukhopadhyay B (2002) Description of pseudo-Newtonian potential for the relativistic accretion disks around Kerr black holes. Astrophys J 581(1):427

    Article  Google Scholar 

  29. Steklain AF, Letelier PS (2009) Stability of orbits around a spinning body in a pseudo-Newtonian Hill problem. Phys Lett A 373(2):188–194

    Article  MATH  Google Scholar 

  30. Rojas-Niño A, Martínez-Medina LA, Pichardo B, Valenzuela O (2015) Detecting triaxiality in the galactic dark matter halo through stellar kinematics ii. dependence on nature dark matter and gravity. Astrophys J 805(1):29

    Article  Google Scholar 

  31. Martínez-Medina LA, Pichardo B, Moreno E, Peimbert A, Velazquez H (2016) On the Origin of High-altitude Open Clusters in the Milky Way. ApJ 817:L3

    Article  Google Scholar 

  32. Miyamoto M, Nagai R (1975) Three-dimensional models for the distribution of mass in galaxies. Publ Astron Soc Japan 27:533

    Google Scholar 

  33. Skokos C (2001) Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits. J Phys A 34:10029

    Article  MathSciNet  MATH  Google Scholar 

  34. Carpintero DD, Aguilar LA (1998) Orbit classification in arbitrary 2D and 3D potentials. MNRAS 298:1

    Article  Google Scholar 

  35. Novikov ID, Frolov VP (1989) Physics of black holes. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  36. Binney J, Tremaine S (2008) Galactic dynamics. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  37. Skokos C, Antonopoulos C, Bountis TC, Vrahatis MN (2004) Detecting order and chaos in Hamiltonian systems by the SALI method. J Phys A: Math Gen 37:6269

    Article  MathSciNet  Google Scholar 

  38. Zotos EE, Carpintero DD (2013) Orbit classification in the meridional plane of a disk galaxy model with a spherical nucleus. Celest Mech Dyn Astron 116:417

    Article  Google Scholar 

  39. Press HP, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in FORTRAN 77, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  40. Nagler J (2004) Crash test for the Copenhagen problem. Phys Rev E 69:066218

    Article  MathSciNet  Google Scholar 

  41. Nagler J (2005) Crash test for the restricted three-body problem. Phys Rev E 71:026227

    Article  MathSciNet  Google Scholar 

  42. Aguirre J, Vallego JC, Sanjuán MAF (2001) Wada basins and chaotic invariant sets in the Hénon-Heiles system. Phys Rev E 64:066208

    Article  Google Scholar 

  43. Aguirre J, Viana RL, Sanjuán MAF (2009) Fractal structures in nonlinear dynamics. Rev Mod Phys 81:333

    Article  Google Scholar 

Download references

Acknowledgements

The present research work was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R106), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Euaggelos E. Zotos.

Ethics declarations

Compliance with Ethical Standards

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alrebdi, H.I., Dubeibe, F.L. & Zotos, E.E. Effects of the rotation of the central black hole in a disk galaxy model. Meccanica 57, 2253–2268 (2022). https://doi.org/10.1007/s11012-022-01577-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-022-01577-7

Keywords

Navigation