Skip to main content
Log in

Numerical simulation of crack propagation in solid propellant with extrinsic cohesive zone model

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

To further investigate the fracture properties of solid propellant, crack propagation simulation technique is proposed for mode I fracture problems in conjunction with extrinsic cohesive zone model (CZM). Viscoelastic constitutive model for solid propellant and extrinsic Park-Paulino-Roesler (PPR) model constructed to characterize the fracture process are introduced in detail for the computational fracture mechanics approach using finite element method. Topological operations are employed to update the finite element information when extrinsic cohesive elements which represent the new crack facets are inserted. Single edge-notched tension (SENT) and three-point bending test are analyzed to demonstrate the accuracy and effectiveness of the proposed computational framework. Computational results demonstrate that crack propagation simulation technique with extrinsic CZM can provide more accurate fracture response than intrinsic CZM with predefined crack path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Gondouin B (1993) Structural analysis of propellant grains. Pergamon, England

    Google Scholar 

  2. Bollard RJH, Dill EH (1967) Structural integrity analysis of large solid propellant motor grains. MSC65-21-2

  3. Cui HR, Tang GJ, Shen ZB (2017) A three-dimensional viscoelastic constitutive model of solid propellant considering viscoelastic Poisson’s ratio and its implementation. Eur J Mech A/Solids 61:235–244

    Article  MathSciNet  Google Scholar 

  4. Chu HT, Chou JH (2011) Poisson ratio effect on stress behavior of propellant grains under ignition loading. J Propul Power 27(3):662–667

    Article  Google Scholar 

  5. Liu DD (1997) Crack growth behavior in a solid propellant. Eng Fract Mech 56:127–135

    Article  Google Scholar 

  6. Schapery RA (1975) A theory of crack initiation and growth in viscoelastic media I: theoretical development. Int J Fract 11(1):141–159

    Article  MathSciNet  Google Scholar 

  7. Schapery RA (1975) A theory of crack initiation and growth in viscoelastic media II: approximate methods of analysis. Int J Fract 11(3):369–388

    Article  Google Scholar 

  8. Schapery RA (1975) A theory of crack initiation and growth in viscoelastic media III: analysis of continuous growth. Int J Fract 11(4):549–562

    Article  Google Scholar 

  9. Langlios G, Gonard R (1979) New law for crack propagation in solid propellant material. J Spacecraft Rock 16(6):357–360

    Article  Google Scholar 

  10. Long B, Wang HL, Gao SS (2020) Study on the fracture properties of HTPB propellant at low temperature. Propell Explos Pyrotech 45:136–140

    Article  Google Scholar 

  11. Amico FD, Carbone G, Foglia MM et al (2013) Moving cracks in viscoelastic materials: temperature and energy-release-rate measurements. Eng Fract Mech 98:315–325

    Article  Google Scholar 

  12. Özüpek Ş, Iyidiker C (2014) Modeling cracks in nonlinear viscoelastic media subjected to thermal loading. In: Proceedings of the 50th AIAA/ASME/SAE/ASEE joint propulsion conference. Doi: https://doi.org/10.2514/2516.2014-3803.

  13. Zhao JL, Gao B, Zhao JF (2014) Numerical analysis of mesostructure damage for composite solid propellant using a combined XFEM-cohesive zone model. Appl Mech Mater 551:71–76

    Article  Google Scholar 

  14. Wang WQ, Zheng J, Chen X et al (2015) Numerical simulation of crack propagation in CMDB propellant based on extended finite element method. J Propul Technol 36:149–154

    Google Scholar 

  15. Han B, Ju YT, Zhou CS (2012) Simulation of crack propagation in HTPB propellant using cohesive zone model. Eng Fail Anal 26:304–317

    Article  Google Scholar 

  16. Zheng J, Yu JQ, Zhou CS et al (2016) Research on fracture property of CMDB propellant based on cohesive zone model. J Propul Technol 37:2182–2186

    Google Scholar 

  17. Barenblatt GI (1959) The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks. J Appl Math Mech 23(3):622–636

    Article  MathSciNet  Google Scholar 

  18. Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55–129

    Article  MathSciNet  Google Scholar 

  19. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104

    Article  Google Scholar 

  20. Cui HR, Shen ZB, Li HY (2019) Cohesive zone model for mode-I fracture with viscoelastic sensitivity. Eng Fract Mech 221:106578

    Article  Google Scholar 

  21. Wang JL (2007) Cohesive zone model of FRP-concrete interface debonding under mixed-mode loading. Int J Solids Struct 44(20):6551–6568

    Article  Google Scholar 

  22. Li W, Yang XH, Zhang GB et al (2017) Cohesive zone modeling of creep-fatigue crack propagation with dwell time. Adv Mech Eng 9(10):1–7

    Google Scholar 

  23. Ravi-Chandar K, Yang B (1997) On the role of microcracks in the dynamic fracture of brittle materials. J Mech Phys Solids 45:535–563

    Article  Google Scholar 

  24. Needleman A (1990) An analysis of decohesion along an imperfect interface. Int J Fract 42(1):21–40

    Article  Google Scholar 

  25. Petersson PE (1981) Crack growth and development of fracture zones in plain concrete and similar materials

  26. Niu RM, Zhou QC, Chen X et al (2014) Experimental and numerical analysis of mode II fracture between propellant and insulation. Int J Adhes Adhes 52:1–10

    Article  Google Scholar 

  27. Cui HR, Shen ZB, Li HY (2018) A novel time dependent cohesive zone model for the debonding interface between solid propellant and insulation. Meccanica 53:3527–3544

    Article  Google Scholar 

  28. Zhang ZY, Paulino GH, Celes W (2007) Extrinsic cohesive modelling of dynamic fracture and microbranching instability in brittle materials. Int J Numer Methods Eng 72:893–923

    Article  Google Scholar 

  29. Choi HB, Park K (2019) Removing mesh bias in mixed-mode cohesive fracture simulation with stress recovery and domain integral. Int J Numer Methods Eng 120(9):1047–1070

    Article  MathSciNet  Google Scholar 

  30. Baek H, Kweon C, Park K (2020) Multiscale dynamic fracture analysis of composite materials using adaptive microstructure modeling. Int J Numer Methods Eng 121(24):5719–5741

    Article  MathSciNet  Google Scholar 

  31. Yang JF, Lian HJ, Nguyen VP (2021) Study of mixed mode I/II cohesive zone models of different rank coals. Eng Fract Mech 246:107611

    Article  Google Scholar 

  32. Sping DW, Leon SE, Paulino GH (2014) Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture. Int J Fract 189:33–57

    Article  Google Scholar 

  33. Baek H, Park K (2018) Cohesive frictional-contact model for dynamic fracture simulations under compression. Int J Solids Struct 144–145:86–99

    Article  Google Scholar 

  34. Park K, Paulino GH, Roesler JR (2009) A unified potential-based cohesive model of mixed-mode fracture. J Mech Phys Solids 57:891–908

    Article  Google Scholar 

  35. Cui HR, Tang GJ, Shen ZB (2016) Study on viscoelastic Poisson’s ratio of solid propellants using digital image correlation method. Propell Explos Pyrotech 41(5):835–843

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Jiangsu Province (BK20210435).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiru Cui.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, H. Numerical simulation of crack propagation in solid propellant with extrinsic cohesive zone model. Meccanica 57, 1617–1630 (2022). https://doi.org/10.1007/s11012-022-01516-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-022-01516-6

Keywords

Navigation