Skip to main content
Log in

Size-dependent static bending, free vibration and buckling analysis of curved flexomagnetic nanobeams

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Based on Hamilton’s variational principle, strain gradient theory and Timoshenko curved nanobeam model, governing equations and corresponding boundary conditions are derived. Governing differential equations are transformed into algebraic equations by employing Navier method, thus an analytical solution for size-dependent static bending, free vibration and buckling analysis of curved flexomagnetic nanobeam is established. Influences of opening angle, aspect ratio and scale parameter on bending deformation, free vibration and stability are discussed in detail. Compared and validated with available investigations, a good agreement is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ma W, Cross LE (2001) Observation of the flexoelectric effect in relaxor Pb(Mg 1/3Nb2/3)O3 ceramics. Appl Phys Lett 78(19):2920

    Article  Google Scholar 

  2. Ma W, Cross LE (2002) Flexoelectric polarization of barium strontium titanate in the paraelectric state. Appl Phys Lett 81(18):3440

    Article  Google Scholar 

  3. Ma W, Cross LE (2005) Flexoelectric effect in ceramic lead zirconate titanate. Appl Phys Lett 86(7):072905-072905–3

    Article  Google Scholar 

  4. Sharma ND, Maranganti R, Sharma P (2007) On the possibility of piezoelectric nanocomposites without using piezoelectric materials. J Mech Phys Solids 55(11):2328–2350

    Article  Google Scholar 

  5. Ma W (2008) A study of flexoelectric coupling associated internal electric field and stress in thin film ferroelectrics. Phys Status Solidi 245(4):761–768

    Article  Google Scholar 

  6. Majdoub MS, Sharma P, Cagin T (2008) Size-dependent super-piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys Rev B 77(12):125424-1–9

    Article  Google Scholar 

  7. Shen S, Hu S (2010) A theory of flexoelectricity with surface effect for elastic dielectrics. J Mech Phys Solids 58(5):665–677

    Article  MathSciNet  Google Scholar 

  8. Zhuang X et al (2020) Computational modeling of flexoelectricity—a review. Energies 13(6):1326

    Article  Google Scholar 

  9. Yudin PV, Tagantsev AK (2013) Fundamentals of flexoelectricity in solids. Nanotechnology 24(43):432001

    Article  Google Scholar 

  10. Zhao X, Zheng S, Li Z (2019) Size-dependent nonlinear bending and vibration of flexoelectric nanobeam based on strain gradient theory. Smart Mater Struct 28(7):075027

    Article  Google Scholar 

  11. Nan Z et al (2020) Size-dependent static bending and free vibration analysis of porous functionally graded piezoelectric nanobeams. Smart Mater Struct 29(4):045025

    Article  Google Scholar 

  12. Chen Q et al (2021) Size-dependent free vibration analysis of functionally graded porous piezoelectric sandwich nanobeam reinforced with graphene platelets with consideration of flexoelectric effect. Smart Mater Struct 30(3):035008

    Article  Google Scholar 

  13. Zhang R, Liang X, Shen S (2015) A Timoshenko dielectric beam model with flexoelectric effect. Meccanica 51(5):1181–1188

    Article  MathSciNet  Google Scholar 

  14. Zheng S, Zhao X, Wang H (2019) Theoretical and finite element modeling of piezoelectric nanobeams with surface and flexoelectricity effects. Mech Adv Mater Struct 26(15):1261–1270

    Article  Google Scholar 

  15. Li JY (2000) Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials. Int J Eng Sci 38:1993–2011

    Article  Google Scholar 

  16. Yang Y, Li X-F (2019) Bending and free vibration of a circular magnetoelectroelastic plate with surface effects. Int J Mech Sci 157–158:858–871

    Article  Google Scholar 

  17. Eliseev EA et al (2009) Spontaneous flexoelectric/flexomagnetic effect in nanoferroics. Phys Rev B 79(16):165433

    Article  Google Scholar 

  18. Lukashev P, Sabirianov RF (2010) Flexomagnetic effect in frustrated triangular magnetic structures. Phys Rev B 82(9):094417

    Article  Google Scholar 

  19. Eliseev EA et al (2011) Linear magnetoelectric coupling and ferroelectricity induced by the flexomagnetic effect in ferroics. Phys Rev B 84(17):174112

    Article  Google Scholar 

  20. Pyatakov AP, Zvezdin AK (2009) Flexomagnetoelectric interaction in multiferroics. Eur Phys J B 71(3):419–427

    Article  Google Scholar 

  21. Kabychenkov AF, Lisovskii FV (2019) Flexomagnetic and flexoantiferromagnetic effects in centrosymmetric antiferromagnetic materials. Tech Phys 64(7):980–983

    Article  Google Scholar 

  22. Sidhardh S, Ray MC (2018) Flexomagnetic response of nanostructures. J Appl Phys 124(24):244101

    Article  Google Scholar 

  23. Zhang N, Zheng S, Chen D (2019) Size-dependent static bending of flexomagnetic nanobeams. J Appl Phys 126(22):223901

    Article  Google Scholar 

  24. Malikan M, Eremeyev VA, Zur KK (2020) Effect of axial porosities on flexomagnetic response of in-plane compressed piezomagnetic nanobeams. Symmetry-Basel 12(12):1935

    Article  Google Scholar 

  25. Malikan M, Eremeyev VA (2020) On nonlinear bending study of a piezo-flexomagnetic nanobeam based on an analytical-numerical solution. Nanomaterials 10(9)

  26. Malikan M, Uglov NS, Eremeyev VA (2020) On instabilities and post-buckling of piezomagnetic and flexomagnetic nanostructures. Int J Eng Sci 157:103395

    Article  MathSciNet  Google Scholar 

  27. Malikan M, Eremeyev VA (2020) On the geometrically nonlinear vibration of a piezo‐flexomagnetic nanotube. Math Methods Appl Sci

  28. Malikan M, Wiczenbach T, Eremeyev VA (2021) On thermal stability of piezo-flexomagnetic microbeams considering different temperature distributions. Contin Mech Thermodyn

  29. Malikan M, Eremeyev VA (2021) Effect of surface on the flexomagnetic response of ferroic composite nanostructures; nonlinear bending analysis. Compos Struct 271

  30. Malikan M, Eremeyev VA (2021) Flexomagnetic response of buckled piezomagnetic composite nanoplates. Compos Struct 267

  31. Malikan M, Eremeyev VA (2021) Flexomagneticity in buckled shear deformable hard-magnetic soft structures. Contin Mech Thermodyn

  32. Sladek J et al (2021) A cantilever beam analysis with flexomagnetic effect. Meccanica 56(9):2281–2292

    Article  MathSciNet  Google Scholar 

  33. Shi Y et al (2021) Enhanced magnetoelectric response in nanostructures due to flexoelectric and flexomagnetic effects. J Magn Magn Mater 521

  34. Arefi M, Zenkour AM (2017) Influence of magneto-electric environments on size-dependent bending results of three-layer piezomagnetic curved nanobeam based on sinusoidal shear deformation theory. J Sandwich Struct Mater 21(8):2751–2778

    Article  Google Scholar 

  35. Zenkour AM, Arefi M, Alshehri NA (2017) Size-dependent analysis of a sandwich curved nanobeam integrated with piezomagnetic face-sheets. Results Phys 7:2172–2182

    Article  Google Scholar 

  36. Arefi M, Zenkour AM (2018) Size-dependent vibration and electro-magneto-elastic bending responses of sandwich piezomagnetic curved nanobeams. Steel Compos Struct 29(5):579–590

    Google Scholar 

  37. Wu JS, Chiang LK (2003) Out-of-plane responses of a circular curved Timoshenko beam due to a moving load. Int J Solids Struct 40(26):7425–7448

    Article  Google Scholar 

  38. Malekzadeh P, Haghighi MRG, Atashi MM (2010) Out-of-plane free vibration of functionally graded circular curved beams in thermal environment. Compos Struct 92(2):541–552

    Article  Google Scholar 

  39. Thai H-T (2012) A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int J Eng Sci 52:56–64

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the National Natural Science Foundation of China (Grant No. 11572151), the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijie Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Zheng, S. & Chen, D. Size-dependent static bending, free vibration and buckling analysis of curved flexomagnetic nanobeams. Meccanica 57, 1505–1518 (2022). https://doi.org/10.1007/s11012-022-01506-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-022-01506-8

Keywords

Navigation