Skip to main content
Log in

Mathematical model of a mobile robot with a magnetizable material in a uniform alternating magnetic field

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A mathematical model for the motion of a mobile robot that can be controlled using an alternating magnetic field is proposed. The robot is composed of two spherical bodies with a magnetizable material and a non-magnetic elastic coupling. It moves along the bottom of a vessel filled with a liquid. An easy-to-implement alternating (pulsating) uniform magnetic field inclined to a horizontal plane is used to control the robot. The impact of the problem parameters (frequency, tilt angle and magnitude of the magnetic field, viscosity and density of the surrounding liquid, coefficient of friction between the robot and the bottom of the vessel, length of the robot) on the motion of the robot is studied. It is determined that the frequency of the magnetic field, the liquid viscosity and density can reverse the direction of the robot motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zimmermann K, Zeidis I, Behn C (2009) Mechanics of terrestrial locomotion. Springer, Berlin

    MATH  Google Scholar 

  2. Gidoni P, DeSimone A (2017) Stasis domains and slip surfaces in the locomotion of a bio-inspired two-segment crawler. Meccanica 52:587–601. https://doi.org/10.1007/s11012-016-0408-0

    Article  MathSciNet  MATH  Google Scholar 

  3. Chernousko F (2016) Two-dimensional motions of a body containing internal moving masses. Meccanica 51(12):3203–3209. https://doi.org/10.1007/s11012-016-0511-2

    Article  MathSciNet  Google Scholar 

  4. Chernousko FL (2017) Locomotion principles for mobile robotic systems. Procedia Comput Sci 103:613–617. https://doi.org/10.1016/j.procs.2017.01.081

    Article  Google Scholar 

  5. Chernousko FL (2018) Locomotion of multibody robotic systems: dynamics and optimization. Theor Appl Mech 45(1):17–33. https://doi.org/10.2298/tam171017001c

    Article  MATH  Google Scholar 

  6. Nguyen K-T, La N-T, Ho K-T, Ngo Q-H, Chu N-H, Nguyen V-D (2021) The effect of friction on the vibro-impact locomotion system: modeling and dynamic response. Meccanica 56:2121–2137. https://doi.org/10.1007/s11012-021-01348-w

    Article  MathSciNet  Google Scholar 

  7. Liang G, Luo H, Li M, Qian H, Lam TL (2020) FreeBOT: a freeform modular self-reconfigurable robot with arbitrary connection point—design and implementation. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, pp 6506–6513. https://doi.org/10.1109/IROS45743.2020.9341129

  8. Hawkes E, An B, Benbernou NM, Tanaka H, Kim S, Demaine ED, Rus D, Wood RJ (2010) Programmable matter by folding. PNAS 107(28):12441–12445. https://doi.org/10.1073/pnas.0914069107

    Article  Google Scholar 

  9. Miyashita S, Guitron S, Ludersdorfer M, Sung SR, Rus D (2015) An untethered miniature origami robot that self-folds, walks, swims, and degrades. In: 2015 IEEE international conference on robotics and automation (ICRA), IEEE, pp 1490–1496. https://doi.org/10.1109/ICRA.2015.7139386

  10. Miyashita S, Guitron S, Yoshida K, Li S, Damian DD, Rus D (2016) Ingestible, controllable, and degradable origami robot for patching stomach wounds. In: 2016 IEEE international conference on robotics and automation (ICRA), IEEE, pp 909–916. https://doi.org/10.1109/ICRA.2016.7487222

  11. Liu Y, Páez Chávez J, Zhang J, Tian J, Guo B, Prasad S (2020) The vibro-impact capsule system in millimetre scale: numerical optimisation and experimental verification. Meccanica 55:1885–1902. https://doi.org/10.1007/s11012-020-01237-8

    Article  MathSciNet  Google Scholar 

  12. Zimmermann K, Zeidis I, Böhm V, Popp J, Naletova VA, Turkov VA, Bayburtskiy FS, Stepanov GV (2007) Verfahren und Vorrichtung zur Erzeugung einer apedalen translatorischen Bewegung. Patent DE 10 2006 059 537 BE

  13. Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2005) Microscopic artificial swimmers. Nature 437(7060):862–865. https://doi.org/10.1038/nature04090

    Article  MATH  Google Scholar 

  14. Cebers A (2003) Dynamics of a chain of magnetic particles connected with elastic linkers. J Condens Matter Phys 15:1335–1344. https://doi.org/10.1088/0953-8984/15/15/303

    Article  Google Scholar 

  15. Cebers A (2005) Flexible magnetic swimmer. Magnetohydrodynamics 41(1):63–72. https://doi.org/10.22364/mhd.41.1.5

    Article  Google Scholar 

  16. Özdemir İ (2019) Magnetically driven foldable shell type swimmers at Stokes flow. Meccanica 54:1083–1102. https://doi.org/10.1007/s11012-019-01013-3

    Article  MathSciNet  Google Scholar 

  17. Qiu T, Lee TC, Mark AG, Morozov KI, Münster R, Mierka O, Turek S, Leshansky AM, Fisher P (2014) Swimming by reciprocal motion at low Reynolds number. Nat Commun 5:5119. https://doi.org/10.1038/ncomms6119

    Article  Google Scholar 

  18. Li T, Li J, Morozov KI, Wu Z, Xu T, Rozen I, Leshansky AM, Li L, Wang J (2017) Highly efficient freestyle magnetic nanoswimmer. Nano Lett 17(8):5092–5098. https://doi.org/10.1021/acs.nanolett.7b02383

    Article  Google Scholar 

  19. Zimmermann K, Zeidis I, Naletova VA, Turkov VA, Bayburtskiy FS, Lukashevich MV, Böhm V (2006) Elastic capsule filled with magnetic fluid in an alternative magnetic field. In: Euromech colloquium 470 “Recent development in ferrofluid research”, TU Dresden, pp 41–42

  20. Saga N, Nakamura T (2002) Elucidation of propulsive force of microrobot using magnetic fluid. J Appl Phys 91(10):7003–7005. https://doi.org/10.1063/1.1452197

    Article  Google Scholar 

  21. Saga N, Nakamura T (2004) Development of a peristaltic crawling robot using magnetic fluid on the basis of the locomotion mechanism of the earthworm. Smart Mater Struct 13(3):566–569. https://doi.org/10.1088/0964-1726/13/3/016

    Article  Google Scholar 

  22. Zimmermann K, Zeidis I, Naletova VA, Stepanov GV, Turkov VA, Lukashevich MV (2005) Undulation of a magnetizable elastic body in a magnetic field. In: Proceedings of Moscow International Symposium on Magnetism (MISM), Lomonosov Moscow State University, Faculty of Physics Publisher, pp 86–89

  23. Zimmermann K, Naletova VA, Zeidis I, Turkov VA, Kolev E, Lukashevich MV, Stepanov GV (2007) A deformable magnetizable worm in a magnetic field—a prototype of a mobile crawling robot. J Magn Magn Mater 311(1):450–453. https://doi.org/10.1016/j.jmmm.2006.11.153

    Article  Google Scholar 

  24. Zimmermann K, Zeidis I, Naletova VA, Kalmykov SA, Turkov VA (2011) Model of a thin rod with viscoelastic magnetizable material in the alternating magnetic field. Solid State Phenom 190:629–632. https://doi.org/10.4028/www.scientific.net/SSP.190.629

    Article  Google Scholar 

  25. Kalmykov SA, Naletova VA, Turkov VA (2013) Motion of a slender body made of magnetizable composite in a traveling magnetic field. Fluid Dyn 48(1):4–13. https://doi.org/10.1134/S001546281301002X

    Article  MathSciNet  MATH  Google Scholar 

  26. Kim Y, Yuk H, Zhao R, Chester SA, Zhao X (2018) Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558:274–279. https://doi.org/10.1038/s41586-018-0185-0

    Article  Google Scholar 

  27. Hu W, Lum GZ, Mastrangeli M, Sitti M (2018) Small-scale soft-bodied robot with multimodal locomotion. Nature 554:81–85. https://doi.org/10.1038/nature25443

    Article  Google Scholar 

  28. Schmauch MM, Mishra SR, Evans BA, Velev OD, Tracy JB (2017) Chained iron microparticles for directionally controlled actuation of soft robots. ACS Appl Mater Interfaces 9(13):11895–11901. https://doi.org/10.1021/acsami.7b01209

    Article  Google Scholar 

  29. Xu C, Yang Z, Lum GZ (2021) Small-scale magnetic actuators with optimal six degrees-of-freedom. Adv Mater 33:2100170. https://doi.org/10.1002/adma.202100170

    Article  Google Scholar 

  30. Li Y, Qi Z, Yang J, Zhou M, Zhang X, Ling W, Zhang Y, Wu Z, Wang H, Ning B, Xu H, Huo W, Huang X (2019) Origami NdFeB flexible magnetic membranes with enhanced magnetism and programmable sequences of polarities. Adv Funct Mater 29:1904977. https://doi.org/10.1002/adfm.201904977

    Article  Google Scholar 

  31. Qi Z, Zhou M, Li Y, Xia Z, Huo W, Huang X (2021) Reconfigurable flexible electronics driven by origami magnetic membranes. Adv Mater Technol 6:2001124. https://doi.org/10.1002/admt.202001124

    Article  Google Scholar 

  32. Ha M, Cañón Bermúdez GS, Liu JAC, Oliveros ES, Evans BA, Tracy JB, Makarov D (2021) Reconfigurable magnetic origami actuators with on-board sensing for guided assembly. Adv Mater 33:2008751. https://doi.org/10.1002/adma.202008751

    Article  Google Scholar 

  33. Wang X, Mao G, Ge J, Drack M, Cañón Bermúdez GS, Wirthl D, Illing R, Kosub T, Bischoff L, Wang C, Fassbender J, Kaltenbrunner M, Makarov D (2020) Untethered and ultrafast soft-bodied robots. Commun Mater 1:67. https://doi.org/10.1038/s43246-020-00067-1

    Article  Google Scholar 

  34. Merkulov DI, Pelevina DA, Turkov VA, Vinogradova AS, Naletova VA (2021) Mobile robots with magnetizable materials in uniform magnetic fields. Acta Astronaut 181:579–584. https://doi.org/10.1016/j.actaastro.2020.11.052

    Article  Google Scholar 

  35. Yung KW, Landecker PB, Villani DD (1998) An analytic solution for the force between two magnetic dipoles. Magn Electr Separ 9:39–52. https://doi.org/10.1155/1998/79537

    Article  Google Scholar 

  36. Landau LD, Lifshitz EM (1960) Electrodynamics of continuous media. Pergamon, Oxford

    MATH  Google Scholar 

  37. Happel J, Brenner H (1965) Low Reynolds number hydrodynamics. Prentice-Hall, Hoboken

    MATH  Google Scholar 

  38. Bolotnik N, Pivovarov M, Zeidis I, Zimmermann K (2016) On the motion of lumped-mass and distributed-mass self-propelling systems in a linear resistive environment. ZAMM 96(6):747–757. https://doi.org/10.1002/zamm.201500091

    Article  MathSciNet  Google Scholar 

  39. Pelevina DA, Turkov VA, Kalmykov SA, Naletova VA (2015) Motions of objects with magnetizable materials along a horizontal plane in a rotating magnetic field. J Magn Magn Mater 390:20–25. https://doi.org/10.1016/j.jmmm.2015.04.068

    Article  Google Scholar 

  40. Zimmermann K, Zeidis I, Bolotnik N, Pivovarov M (2009) Dynamics of a two-module vibration-driven system moving along a rough horizontal plane. Multibody Syst Dyn 22:199–219. https://doi.org/10.1007/s11044-009-9158-2

    Article  MathSciNet  MATH  Google Scholar 

  41. Zimmermann K, Zeidis I (2011) Dynamical behavior of a mobile system with two degrees of freedom near the resonance. Acta Mech Sin 27(1):7–17. https://doi.org/10.1007/s10409-011-0403-6

    Article  MathSciNet  MATH  Google Scholar 

  42. Zakinyan AR, Mkrtchan LS, Dikansky YuI (2013) Dynamics of magnetic fluid droplets on a solid surface in a rotating magnetic field. In: IV All-Russian scientific conference “Physicochemical and applied problems of magnetic dispersed nanosystems”, North Caucasus Federal University, Stavropol, pp 96–100 (in Russian)

  43. Zakinyan A, Nechaeva O, Dikansky Yu (2012) Motion of a deformable drop of magnetic fluid on a solid surface in a rotating magnetic field. Exp Therm Fluid Sci 39:265–268. https://doi.org/10.1016/j.expthermflusci.2012.01.003

    Article  Google Scholar 

Download references

Funding

The study is supported by the Grant of the Russian Science Foundation (Project No. 20-71-10002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Pelevina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkachenko, E.A., Merkulov, D.I., Pelevina, D.A. et al. Mathematical model of a mobile robot with a magnetizable material in a uniform alternating magnetic field. Meccanica 58, 357–369 (2023). https://doi.org/10.1007/s11012-022-01486-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-022-01486-9

Keywords

Navigation