Skip to main content
Log in

Three-dimensional asperity model of rough surfaces based on valley–peak ratio of the maximum peak

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Three-dimensional asperity model of rough surfaces is proposed using valley–peak ratio (VPR) of the maximum peak. Asperities of rough surfaces are reconstructed according to paraboloid asperity function, which is derived using least square method and asperity projection plane determined via VPR. The minimum profile deviation between reconstructed asperities and rough surface is calculated using simulated annealing method to optimize VPR. Effects of simulated mutation surfaces, measured surfaces, and different sampling intervals (SIs) on profile deviation are investigated. Compared with nine–point method, the proposed model demonstrates a smaller deviation of mutational rough surface, the absence of interference among asperities, and more stable surface parameters and contact mechanics performance at different SIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Muthukumar M, Bobji MS (2018) Effect of micropillar surface texturing on friction under elastic dry reciprocating contact. Meccanica 53:2221–2235

    Article  Google Scholar 

  2. Czifra Á, Váradi K, Horváth S (2008) Three dimensional asperity analysis of worn surfaces. Meccanica 43:601

    Article  MATH  Google Scholar 

  3. Hannes D, Alfredsson B (2012) Surface initiated rolling contact fatigue based on the asperity point load mechanism—a parameter study. Wear 294–295:457–468

    Article  Google Scholar 

  4. Chong WWF, De la Cruz M (2014) Elastoplastic contact of rough surfaces: a line contact model for boundary regime of lubrication. Meccanica 49:1177–1191

    Article  MathSciNet  MATH  Google Scholar 

  5. Hu B, Zhou C, Wang H, Chen S (2021) Nonlinear tribo-dynamic model and experimental verification of a spur gear drive under loss-of-lubrication condition. Mech Syst Signal Process 153:107509

    Article  Google Scholar 

  6. Gadelmawla ES, Koura M, Maksoud T, Elewa I, Soliman H (2002) Roughness parameters. J Mater Process Technol 123:133–145

    Article  Google Scholar 

  7. Wei Z, Jin-yuan T, Yan-fei H, Cai-chao Z (2017) Modeling of rough surfaces with given roughness parameters. J Cent South Univ 24:127–136

    Article  Google Scholar 

  8. Greenwood JA, Williamson JBP (1966) Contact of nominally flat surfaces. Proc R Soc Lond A 295:300–319

    Article  Google Scholar 

  9. Pullen J, Williamson JBP (1972) On the plastic contact of rough surfaces. Proc R Soc Lond A 327:159–173

    Article  Google Scholar 

  10. Chang W-R, Etsion I, Bogy D (1987) An elastic-plastic model for the contact of rough surfaces. J Tribol Transac 109:257–263

    Article  Google Scholar 

  11. Zhao Y, Maietta DM, Chang L (2000) An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. J Tribol 122:86–93

    Article  Google Scholar 

  12. Persson BNJ (2001) Theory of rubber friction and contact mechanics. J Chem Phys 115:3840–3861

    Article  Google Scholar 

  13. Persson BNJ (2006) Contact mechanics for randomly rough surfaces. Surf Sci Rep 61:201–227

    Article  Google Scholar 

  14. Pugliese G, Tavares SMO, Ciulli E, Ferreira LA (2008) Rough contacts between actual engineering surfaces. Wear 264:1116–1128

    Article  Google Scholar 

  15. Wen Y, Tang J, Zhou W, Zhu C (2018) A new elliptical microcontact model considering elastoplastic deformation. Proc Inst Mech Eng, Part J: J Eng Tribol 232:1352–1364

    Article  Google Scholar 

  16. Peng W, Bhushan B (2001) Three-dimensional contact analysis of layered elasticplastic solids with rough surfaces. Wear 249(741):760

    Google Scholar 

  17. Kogut L, Etsion I (2002) Elastic-plastic contact analysis of a sphere and a rigid flat. J Appl Mech-transac 69:657–662

    Article  MATH  Google Scholar 

  18. Buczkowski R, Kleiber M (2009) Statistical models of rough surfaces for finite Element 3D-contact analysis. Archiv Comput Methods Eng 16:399–424

    Article  MathSciNet  MATH  Google Scholar 

  19. Yastrebov VA, Anciaux G, Molinari J-F (2015) From infinitesimal to full contact between rough surfaces: evolution of the contact area. Int J Solids Struct 52:83–102

    Article  Google Scholar 

  20. Ciavarella M (2016) Rough contacts near full contact with a very simple asperity model. Tribol Int 93:464–469

    Article  Google Scholar 

  21. Yastrebov VA, Anciaux G, Molinari J-F (2017) On the accurate computation of the true contact-area in mechanical contact of random rough surfaces. Tribol Int 114:161–171

    Article  Google Scholar 

  22. Bhagwat P, Sista B, Vemaganti K (2017) A computational study of the effects of strain hardening in micro-asperity friction models. Tribol Lett 65:154

    Article  Google Scholar 

  23. Pondicherry K, Rajaraman D, Galle T, Hertelé S, Fauconnier D, De Baets P (2020) Optimization and validation of a load-controlled numerical model for single asperity scratch. Tribol Lett 68:45

    Article  Google Scholar 

  24. Zheng X, Zhu H, Tieu AK, Kosasih B (2014) Roughness and lubricant effect on 3d atomic asperity contact. Tribol Lett 53:215–223

    Article  Google Scholar 

  25. Kucharski S, Starzynski G (2014) Study of contact of rough surfaces: Modeling and experiment. Wear 311:167–179

    Article  Google Scholar 

  26. Jedynak R, Sułek M (2014) Numerical and experimental investigation of plastic interaction between rough surfaces. Arabian J Sci Eng 39:4165–4177

    Article  Google Scholar 

  27. Brodnik Žugelj B, Kalin M (2017) In-situ observations of a multi-asperity real contact area on a submicron scale. Strojniški vestnik—J Mech Eng 63:351–362

    Article  Google Scholar 

  28. Hu Y, Tonder K (1992) Simulation of 3-D random rough surface by 2-D digital filter and fourier analysis. Int J Mach Tools Manuf 32:83–90

    Article  Google Scholar 

  29. Zhou W, Tang J, Huang Z (2015) A new method for rough surface profile simulation based on peak-valley mapping. Tribol Trans 58:971–979

    Article  Google Scholar 

  30. Greenwood JA, Wu JJ (2001) Surface roughness and contact: an apology. Meccanica 36:617–630

    Article  MATH  Google Scholar 

  31. Pogačnik A, Kalin M (2013) How to determine the number of asperity peaks, their radii and their heights for engineering surfaces: a critical appraisal. Wear 300:143–154

    Article  Google Scholar 

  32. Aramaki H, Cheng HS, Chung Y-W (1993) The contact between rough surfaces with longitudinal texture—Part I: average contact pressure and real contact area. J Tribol 115:419–424

    Article  Google Scholar 

  33. Ciulli E, Ferreira LA, Pugliese G, Tavares SMO (2008) Rough contacts between actual engineering surfaces. Wear 264:1105–1115

    Article  Google Scholar 

  34. Wen Y, Tang J, Wei Z, Zhu C (2018) An improved simplified model of rough surface profile. Tribol Int 125:75–84

    Article  Google Scholar 

  35. Kalin M, Pogačnik A (2013) Criteria and properties of the asperity peaks on 3D engineering surfaces. Wear 308:95–104

    Article  Google Scholar 

  36. Barre´ F, Lopez J (2020) Watershed lines and catchment basins: a new 3D-motif method. Int J Mach Tools Manuf 40:1171–84

    Article  Google Scholar 

  37. Wen Y, Wei JT, Zhou W, Li L (2020) A reconstruction and contact analysis method of three-dimensional rough surface based on ellipsoidal asperity. J Tribol 142:4

    Article  Google Scholar 

  38. Thomas TR, Rosén B-G (2000) Determination of the optimum sampling interval for rough contact mechanics. Tribol Int 33:601–610

    Article  Google Scholar 

  39. Pawlus P, Zelasko W (2012) The importance of sampling interval for rough contact mechanics. Wear 276–277:121–129

    Article  Google Scholar 

  40. Johnson KL. Contact Mechanics: journal of tribology; 1985.

  41. Ciavarella M, Papangelo A (2017) Discussion of measuring and understanding contact area at the nanoscale: a review. Appl Mech Rev 69(6):060802

    Article  Google Scholar 

  42. Papangelo A, Hoffmann N, Ciavarella M (2017) Load-separation curves for the contact of self-affine rough surfaces. Sci Rep 7:6900

    Article  Google Scholar 

  43. Castagnetti D, Dragoni E (2016) Experimental investigation and model validation of the shear strength of hybrid interfaces up to complete failure. J Adhes 92:679–697

    Article  Google Scholar 

  44. Castagnetti D, Dragoni E (2014) Adhesively-bonded friction interfaces: Macroscopic shear strength prediction by microscale finite element simulations. Int J Adhes Adhes 53:57–64

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support by the National Natural Science Foundation of China (Grant No. 52075153 and 52005051) and Natural Science Foundation of Hunan Province (Grant No. 2019JJ40020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changjiang Zhou or Bo Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Wang, H., Wang, H. et al. Three-dimensional asperity model of rough surfaces based on valley–peak ratio of the maximum peak. Meccanica 56, 711–730 (2021). https://doi.org/10.1007/s11012-021-01309-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-021-01309-3

Keywords

Navigation