Abstract
Solid-state-batteries (SSBs) present a promising technology for next-generation batteries due to their superior properties including increased energy density, wider electrochemical window and safer electrolyte design. Commercialization of SSBs, however, will depend on the resolution of a number of critical chemical and mechanical stability issues. The resolution of these issues will in turn depend heavily on our ability to accurately model these systems such that appropriate material selection, microstructure design, and operational parameters may be determined. In this article we review the current state-of-the art modeling tools with a focus on chemo-mechanics. Some of the key chemo-mechanical problems in SSBs involve dendrite growth through the solid-state electrolyte (SSE), interphase formation at the anode/SSE interface, and damage/decohesion of the various phases in the solid-state composite cathode. These mechanical processes in turn lead to capacity fade, impedance increase, and short-circuit of the battery, ultimately compromising safety and reliability. The article is divided into the three natural components of an all-solid-state architecture. First, modeling efforts pertaining to Li-metal anodes and dendrite initiation and growth mechanisms are reviewed, making the transition from traditional liquid electrolyte anodes to next generation all-solid-state anodes. Second, chemo-mechanics modeling of the SSE is reviewed with a particular focus on the formation of a thermodynamically unstable interphase layer at the anode/SSE interface. Finally, we conclude with a review of chemo-mechanics modeling efforts for solid-state composite cathodes. For each of these critical areas in a SSB we conclude by highlighting the key open areas for future research as it pertains to modeling the chemo-mechanical behavior of these systems.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652
Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2015) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11:19
Yao X, Liu D, Wang C, Long P, Peng G, Hu YS, Li H, Chen L, Xu X (2016) High-energy all-solid-state lithium batteries with ultralong cycle life. Nano Lett 16(11):7148
Li J, Ma C, Chi M, Liang C, Dudney NJ (2015) Solid electrolyte: the key for high‐voltage lithium batteries. Adv Energy Mater 5:1401408
Zhu Y, He X, Mo Y (2015) Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interfaces 7(42):23685
Richards WD, Miara LJ, Wang Y, Kim JC, Ceder G (2015) Interface stability in solid-state batteries. Chem Mater 28(1):266
Roth EP, Orendorff CJ (2012) How electrolytes influence battery safety. Electrochem Soc Interface 21(2):45
Yang C, Fu K, Zhang Y, Hitz E, Hu L (2017) Protected lithium-metal anodes in batteries: from liquid to solid. Adv Mater 29(36):1701169
Zhang W, Nie J, Li F, Wang ZL, Sun C (2018) A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy 45:413
Hayashi A, Ohtomo T, Mizuno F, Tadanaga K, Tatsumisago M (2003) All-solid-state Li/S batteries with highly conductive glass-ceramic electrolytes. Electrochem Commun 5(8):701
Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed 46(41):7778
Thokchom JS, Gupta N, Kumar B (2008) Superionic conductivity in a lithium aluminum germanium phosphate glass-ceramic. J Electrochem Soc 155(12):A915
Allen J, Wolfenstine J, Rangasamy E, Sakamoto J (2012) Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. J Power Sources 206:315
Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M (2014) A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ Sci 7:627
Thangadurai V, Pinzaru D, Narayanan S, Baral A Kumar (2015) Correction to “Fast solid-state li ion conducting garnet-type structure metal oxides for energy storage”. J Phys Chem Lett 6(3):347
Song X, Lu Y, Wang F, Zhao X, Chen H (2020) A coupled electro-chemo-mechanical model for all-solid-state thin film Li-ion batteries: the effects of bending on battery performances. J Power Sources 452:227803
Ren Y, Shen Y, Lin Y, Nan CW (2015) Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem Commun 57:27
Sharafi A, Meyer HM, Nanda J, Wolfenstine J, Sakamoto J (2016) Characterizing the Li-Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. J Power Sources 302:135
Cheng E, Sharafi A, Sakamoto J (2016) Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim Acta 223:85
Aguesse F, Manalastas W, Buannic L, Lopez del Amo JM, Singh G, Llords A, Kilner J (2017) Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with li Metal. ACS Appl Mater Interfaces 9(4):3808
Porz L, Swamy T, Sheldon BW, Rettenwander D, Frmling T, Thaman HL, Berendts S, Uecker R, Carter WC, Chiang YM (2017) Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv Energy Mater 7(20):1701003
Narayan S, Anand L (2018) A large deformation elastic-viscoplastic model for lithium. Extreme Mech Lett 24:21
Kobayashi T, Yamada A, Kanno R (2008) Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON. Electrochim Acta 53(15):5045
Sakuda A, Hayashi A, Tatsumisago M (2010) Interfacial observation between LiCoO2 electrode and Li2S- P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy. Chem Mater 22(3):949
Santhanagopalan D, Qian D, McGilvray T, Wang Z, Wang F, Camino F, Graetz J, Dudney N, Meng YS (2014) Interface limited lithium transport in solid-state batteries. J Phys Chem Lett 5(2):298
Wenzel S, Randau S, Leichtweiß T, Weber DA, Sann J, Zeier WG, Janek J (2016) Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem Mater 28(7):2400
Lewis JA, Cortes FJQ, Boebinger MG, Tippens J, Marchese TS, Kondekar N, Liu X, Chi M, McDowell MT (2019) Interphase morphology between a solid-state electrolyte and lithium controls cell failure. ACS Energy Lett 4(2):591
Koerver R, Zhang W, de Biasi L, Schweidler S, Kondrakov AO, Kolling S, Brezesinski T, Hartmann P, Zeier WG, Janek J (2018) Chemo-mechanical expansion of lithium electrode materials-on the route to mechanically optimized all-solid-state batteries. Energy Environ Sci 11(8):2142
Zhang W, Richter FH, Culver SP, Leichtweiss T, Lozano JG, Dietrich C, Bruce PG, Zeier WG, Janek J (2018) Degradation mechanisms at the Li10GeP2S12/LiCoO2 cathode interface in an all-solid-state lithium-ion battery. ACS Appl Mater Interfaces 10(26):22226
Goodenough JB, Kim Y (2010) Challenges for rechargeable li batteries. Chem Mater 22(3):587
Takada K (2013) Progress and prospective of solid-state lithium batteries. Acta Mater 61(3):759
Lewis JA, Tippens J, Cortes FJQ, McDowell MT (2019) Chemo-mechanical challenges in solid-state batteries. Trends Chem 1:845–857
Xu L, Tang S, Cheng Y, Wang K, Liang J, Liu C, Cao YC, Wei F, Mai L (2018) Interfaces in solid-state lithium batteries. Joule 2(10):1991
Shen Z, Zhang W, Zhu G, Huang Y, Feng Q, Lu Y (2020) Design principles of the anode-electrolyte interface for all solid-state lithium metal batteries. Small Methods 4:1900592
Wang P, Qu W, Song WL, Chen H, Chen R, Fang D (2019) Electro-chemo-mechanical issues at the interfaces in solid-state lithium metal batteries. Adv Funct Mater 29(27):1900950
Zhang F, Huang QA, Tang Z, Li A, Shao Q, Zhang L, Li X, Zhang J (2020) A review of mechanics-related material damages in all-solid-state batteries: mechanisms, performance impacts and mitigation strategies. Nano Energy 70:104545
Zhao Y, Stein P, Bai Y, Al-Siraj M, Yang Y, Xu BX (2019) A review on modeling of electro-chemo-mechanics in lithium-ion batteries. J Power Sources 413:259
Albertus P, Babinec S, Litzelman S, Newman A (2018) Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat Energy 3:16
Kerman K, Luntz A, Viswanathan V, Chiang YM, Chen Z (2017) practical challenges hindering the development of solid state Li ion batteries. J Electrochem Soc 164(7):A1731
Barton JL, Bockris JO, Ubbelohde ARJP (1962) The electrolytic growth of dendrites from ionic solutions. Proc R Soc Lond A 268(1335):485
Diggle JW, Despic AR, Bockris JO (1969) The mechanism of the dendritic electrocrystallization of zinc. J Electrochem Soc 116(11):1503
Chazalviel JN (1990) Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys Rev A 42:7355
Brissot C, Rosso M, Chazalviel JN, Baudry P, Lascaud S (1998) In situ study of dendritic growth inlithium/PEO-salt/lithium cells. Electrochim Acta 43(10):1569
Monroe C, Newman J (2003) Dendrite growth in lithium/polymer systems: a propagation model for liquid electrolytes under galvanostatic conditions. J Electrochem Soc 150(10):A1377
Mullins W, Sekerka R (1963) Morphological stability of a particle growing by difusion or heat flow. J Appl Phys 34:323
Mullins WW, Sekerka RF (1964) Stability of a planar interface during solidification of a dilute binary alloy. J Appl Phys 35(2):444
Aogaki R, Makino T (1981) Theory of powdered metal formation in electrochemistry-morphological instability in galvanostatic crystal growth under diffusion control. Electrochim Acta 26(11):1509
Aogaki R (1982) Image analysis of morphological instability in galvanostatic electrocrystallization: I. General expression for the growth mode of surface irregularities. J Electrochem Soc 129(11):2442
Barkey DP, Muller RH, Tobias CW (1989) Roughness development in metal electrodeposition: II. Stability theory. J Electrochem Soc 136(8):2207
Pritzker MD, Fahidy TZ (1992) Morphological stability of a planar metal electrode during potentiostatic electrodeposition and electrodissolution. Electrochim Acta 37(1):103
Sundstrm LG, Bark FH (1995) On morphological instability during electrodeposition with a stagnant binary electrolyte. Electrochim Acta 40(5):599
Selim R, Bro P (1974) Some observations on rechargeable lithium electrodes in a propylene carbonate electrolyte. J Electrochem Soc 121(11):1457
Stewart SG, Newman J (2008) The use of UV/vis absorption to measure diffusion coefficients in LiPF6 electrolytic solutions. J Electrochem Soc 155(1):F13
Akolkar R (2013) Mathematical model of the dendritic growth during lithium electrodeposition. J Power Sources 232:23
Akolkar R (2014) Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature. J Power Sources 246:84
Ely DR, Garca RE (2013) Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes. J Electrochem Soc 160(4):A662
Guyer JE, Boettinger WJ, Warren JA, McFadden GB (2004) Phase field modeling of electrochemistry. II. Kinetics. Phys Rev E 69(2):021604
Shibuta Y, Okajima Y, Suzuki T (2007) Phase-field modeling for electrodeposition process. Sci Technol Adv Mater 8(6):511
Liang L, Qi Y, Xue F, Bhattacharya S, Harris SJ, Chen LQ (2012) Nonlinear phase-field model for electrode-electrolyte interface evolution. Phys Rev E 86(5):051609
Ely DR, Jana A, García RE (2014) Phase field kinetics of lithium electrodeposits. J Power Sources 272:581
Chen L, Zhang HW, Liang LY, Liu Z, Qi Y, Lu P, Chen J, Chen LQ (2015) Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model. J Power Sources 300:376
Cogswell DA (2015) Quantitative phase-field modeling of dendritic electrodeposition. Phys Rev E 92(1):011301
Monroe C, Newman J (2004) The effect of interfacial deformation on electrodeposition kinetics. J Electrochem Soc 151(6):A880
Ganser M, Hildebrand FE, Klinsmann M, Hanauer M, Kamlah M, McMeeking RM (2019) An extended formulation of butler-volmer electrochemical reaction kinetics including the influence of mechanics. J Electrochem Soc 166(4):H167
Monroe C, Newman J (2005) The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc 152(2):A396
Yu S, Siegel DJ (2018) Grain boundary softening: a potential mechanism for lithium metal penetration through stiff solid electrolytes. ACS Appl Mater Interfaces 10(44):38151
Tian HK, Liu Z, Ji Y, Chen LQ, Qi Y (2019) Interfacial electronic properties dictate Li dendrite growth in solid electrolytes. Chem Mater 31(18):7351
Klinsmann M, Hildebrand FE, Ganser M, McMeeking RM (2019) Dendritic cracking in solid electrolytes driven by lithium insertion. J Power Sources 442:227226
Tian HK, Xu B, Qi Y (2018) Computational study of lithium nucleation tendency in Li7La3Zr2O12 (LLZO) and rational design of interlayer materials to prevent lithium dendrites. J Power Sources 392:79
Barai P, Higa K, Srinivasan V (2017) Effect of initial state of lithium on the propensity for dendrite formation: a theoretical study. J Electrochem Soc 164(2):A180
Ahmad Z, Viswanathan V (2017) Stability of electrodeposition at solid-solid interfaces and implications for metal anodes. Phys Rev Lett 119:056003
Ahmad Z, Viswanathan V (2017) Role of anisotropy in determining stability of electrodeposition at solid-solid interfaces. Phys Rev Mater 1:055403
Natsiavas P, Weinberg K, Rosato D, Ortiz M (2016) Effect of prestress on the stability of electrode-electrolyte interfaces during charging in lithium batteries. J Mech Phys Solids 95:92
McMeeking RM, Ganser M, Klinsmann M, Hildebrand FE (2019) Metal electrode surfaces can roughen despite the constraint of a stiff electrolyte. J Electrochem Soc 166(6):A984. https://doi.org/10.1149/2.0221906jes
Barai P, Higa K, Srinivasan V (2017) Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies. Phys Chem Chem Phys 19:20493
Wang Y, Cheng YT (2017) A nanoindentation study of the viscoplastic behavior of pure lithium. Scr Mater 130:191
Xu C, Ahmad Z, Aryanfar A, Viswanathan V, Greer JR (2017) Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes. Proc Nat Acad Sci 114(1):57
LePage WS, Chen Y, Kazyak E, Chen KH, Sanchez AJ, Poli A, Arruda EM, Thouless MD, Dasgupta NP (2019) Lithium mechanics: roles of strain rate and temperature and implications for lithium metal batteries. J Electrochem Soc 166(2):A89
Masias A, Felten N, Garcia-Mendez R, Wolfenstine J, Sakamoto J (2019) Elastic, plastic, and creep mechanical properties of lithium metal. J Mater Sci 54(3):2585
Fincher CD, Ojeda D, Zhang Y, Pharr GM, Pharr M (2020) Mechanical properties of metallic lithium: from nano to bulk scales. Acta Mater 186:215
Schultz RP (2002) Lithium: measurement of young’s modulus and yield strength. Tech. rep. Fermi National Accelerator Lab., Batavia, IL (US)
Ferrese A, Newman J (2014) Mechanical deformation of a lithium-metal anode due to a very stiff separator. J Electrochem Soc 161(9):A1350
Barai P, Higa K, Srinivasan V (2017) Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies. Phys Chem Chem Phys 19(31):20493
Anand L, Narayan S (2019) An elastic-viscoplastic model for lithium. J Electrochem Soc 166(6):A1092
Wenzel S, Sedlmaier SJ, Dietrich C, Zeier WG, Janek J (2018) Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ion 318:102
Wang S, Xu H, Li W, Dolocan A, Manthiram A (2017) Interfacial chemistry in solid-state batteries: formation of interphase and its consequences. J Am Chem Soc 140(1):250
Tippens J, Miers J, Afshar A, Lewis J, Cortes FJQ, Qiao H, Marchese TS, Di Leo CV, Saldana C, McDowell MT (2019) Visualizing chemo-mechanical degradation of a solid-state battery electrolyte. ACS Energy Lett 4:1475–1483
Leo CVD, Rejovitzky E, Anand L (2015) Diffusion deformation theory for amorphous silicon anodes: the role of plastic deformation on electrochemical performance. Int J Solids Struct 67–68:283
Rejovitzky E, Di Leo CV, Anand L (2015) A theory and a simulation capability for the growth of a solid electrolyte interphase layer at an anode particle in a Li-ion battery. J Mech Phys Solids 78:210
Loeffel K, Anand L (2011) A chemo-thermo-mechanically coupled theory for elastic-viscoplastic deformation, diffusion, and volumetric swelling due to a chemical reaction. Int J Plast 27(9):1409
Busso EP, Qian ZQ (2006) A mechanistic study of microcracking in transversely isotropic ceramic-metal systems. Acta Mater 54(2):325
Karlsson AM, Xu T, Evans A (2002) The effect of the thermal barrier coating on the displacement instability in thermal barrier systems. Acta Mater 50(5):1211
Loeffel K, Anand L, Gasem ZM (2013) On modeling the oxidation of high-temperature alloys. Acta Mater 61(2):399
Zhao Y, Chen Y, Ai S, Fang D (2019) A diffusion, oxidation reaction and large viscoelastic deformation coupled model with applications to SiC fiber oxidation. Int J Plast 118:173
Salvadori A, McMeeking R, Grazioli D, Magri M (2018) A coupled model of transport-reaction-mechanics with trapping. Part I—small strain analysis. J Mech Phys Solids 114:1
Di Leo CV, Anand L (2013) Hydrogen in metals: a coupled theory for species diffusion and large elastic-plastic deformations. Int J Plast 43:42
Anand L, Mao Y, Talamini B (2019) On modeling fracture of ferritic steels due to hydrogen embrittlement. J Mech Phys Solids 122:280
Miehe C, Dal H, Schänzel LM, Raina A (2016) A phase-field model for chemo-mechanical induced fracture in lithium-ion battery electrode particles. Int J Numer Methods Eng 106(9):683
Han X, Gong Y, Fu KK, He X, Hitz GT, Dai J, Pearse A, Liu B, Wang H, Rubloff G et al (2017) Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater 16(5):572
Ganser M, Hildebrand FE, Kamlah M, McMeeking RM (2019) A finite strain electro-chemo-mechanical theory for ion transport with application to binary solid electrolytes. J Mech Phys Solids 125:681
Newman J, Thomas-Alyea KE (2012) Electrochemical systems. Wiley, New York
Bucci G, Chiang YM, Carter WC (2016) Formulation of the coupled electrochemical-mechanical boundary-value problem, with applications to transport of multiple charged species. Acta Mater 104:33
Grazioli D, Zadin V, Brandell D, Simone A (2019) Electrochemical-mechanical modeling of solid polymer electrolytes: stress development and non-uniform electric current density in trench geometry microbatteries. Electrochim Acta 296:1142
Zavattieri P, Raghuram P, Espinosa H (2001) A computational model of ceramic microstructures subjected to multi-axial dynamic loading. J Mech Phys Solids 49(1):27
Templeton DW, Holmquist TJ, MEYER HW, Grove DJ, Leavy B (2002) A comparison of ceramic material models. Ceram Trans 134:299
Deshpande VS, Gamble EN, Compton BG, McMeeking RM, Evans AG, Zok FW (2011) A constitutive description of the inelastic response of ceramics. J Am Ceram Soc 94:s204
Deshpande V, Evans A (2008) Inelastic deformation and energy dissipation in ceramics: a mechanism-based constitutive model. J Mech Phys Solids 56(10):3077
Holland CC, McMeeking RM (2015) The influence of mechanical and microstructural properties on the rate-dependent fracture strength of ceramics in uniaxial compression. Int J Impact Eng 81:34
Espinosa HD, Zavattieri PD, Dwivedi SK (1998) A finite deformation continuum\(\backslash\)discrete model for the description of fragmentation and damage in brittle materials. J Mech Phys Solids 46(10):1909
Ashby M, Sammis C (1990) The damage mechanics of brittle solids in compression. Pure Appl Geophys 133(3):489
Kimberley J, Ramesh K, Daphalapurkar N (2013) A scaling law for the dynamic strength of brittle solids. Acta Mater 61(9):3509
Rice RW (1977) Microstructure dependence of mechanical behavior of ceramics. In: Treatise on materials science & technology, vol 11. Elsevier, pp 199–381
Zhang X, Krischok A, Linder C (2016) A variational framework to model diffusion induced large plastic deformation and phase field fracture during initial two-phase lithiation of silicon electrodes. Comput Methods Appl Mech Eng 312:51
Yamakawa S, Nagasako N, Yamasaki H, Koyama T, Asahi R (2018) Phase-field modeling of stress generation in polycrystalline LiCoO2. Solid State Ion 319:209
Ke X, Wang Y, Ren G, Yuan C (2019) Towards rationally mechanical design of inorganic solid electrolytes for all-solid-state lithium ion batteries. Energy Storage Mater 26:313–324
Deng Z, Wang Z, Chu IH, Luo J, Ong SP (2016) Elastic properties of alkali superionic conductor electrolytes from first principles calculations. J Electrochem Soc 163(2):A67
Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758
Pugh S (1954) XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond Edinb Dublin Philos Mag J Sci 45(367):823
Wu M, Xu B, Lei X, Huang K, Ouyang C (2018) Bulk properties and transport mechanisms of a solid state antiperovskite Li-ion conductor Li 3 OCl: insights from first principles calculations. J Mater Chem A 6(3):1150
Mattesini M, Soler JM, Ynduráin F (2006) Ab initio study of metal-organic framework-5 Zn\(_{4}\) O(\(1,4 -\) benzenedicarboxylate )\(_{3}\): an assessment of mechanical and spectroscopic properties. Phys Rev B 73:094111
Wang Z, Wu M, Liu G, Lei X, Xu B, Ouyang C (2014) Elastic properties of new solid state electrolyte material Li10GeP2S12: a study from first-principles calculations. Int J Electrochem Sci 9(2):562
Yang Y, Wu Q, Cui Y, Chen Y, Shi S, Wang RZ, Yan H (2016) Elastic properties, defect thermodynamics, electrochemical window, phase stability, and Li+ mobility of Li3PS4: insights from first-principles calculations. ACS Appl Mater Interfaces 8(38):25229
Chen H, Hong T (2019) First-principles investigation of the mechanical and thermodynamic properties of the metal-borohydrides as electrolytes for solid-state batteries. J Electrochem Soc 166(4):A493
Ahmad Z, Viswanathan V (2016) Quantification of uncertainty in first-principles predicted mechanical properties of solids: application to solid ion conductors. Phys Rev B 94(6):064105
White A (2012) The materials genome initiative: one year on. MRS Bull 37(8):715
Kaufman L, Ågren J (2014) CALPHAD, first and second generation—birth of the materials genome. Scr Mater 70:3
Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G et al (2013) Commentary: the materials project: a materials genome approach to accelerating materials innovation. Apl Mater 1(1):011002
Rajan K (2005) Materials informatics. Mater Today 8(10):38
Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, Kim C (2017) Machine learning in materials informatics: recent applications and prospects. NPJ Comput Mater 3(1):54
Agrawal A, Choudhary A (2016) Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science. Apl Mater 4(5):053208
Makeev MA, Rajput NN (2019) Computational screening of electrolyte materials: status quo and open problems. Curr Opin Chem Eng 23:58
Bhowmik A, Castelli IE, Garcia-Lastra JM, Jørgensen PB, Winther O, Vegge T (2019) A perspective on inverse design of battery interphases using multi-scale modelling, experiments and generative deep learning. Energy Storage Mater 21:446–456
Ahmad Z, Xie T, Maheshwari C, Grossman JC, Viswanathan V (2018) Machine learning enabled computational screening of inorganic solid electrolytes for suppression of dendrite formation in lithium metal anodes. ACS Central Sci 4(8):996
Tsai CL, Roddatis V, Chandran CV, Ma Q, Uhlenbruck S, Bram M, Heitjans P, Guillon O (2016) Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl Mater Interfaces 8(16):10617
Woodford W, Chiang Y, Carter W (2010) “Electrochemical shock” of intercalation electrodes: a fracture mechanics analysis. J Electrochem Soc 157(10):A1052
Zhao K, Pharr M, Vlassak JJ, Suo Z (2010) Fracture of electrodes in lithium-ion batteries caused by fast charging. J Appl Phys 108(7):073517
Bai P, Cogswell D, Bazant M (2011) Suppression of phase separation in LiFePO\(_{4}\) nanoparticles during battery discharge. Nano Lett 11(11):4890–4896
Cogswell DA, Bazant MZ (2013) Theory of coherent nucleation in phase-separating nanoparticles. Nano Lett 13(7):3036
Bohn E, Eckl T, Kamlah M, McMeeking R (2013) A model for lithium diffusion and stress generation in an intercalation storage particle with phase change. J Electrochem Soc 160(10):A1638
Purkayastha R, McMeeking R (2016) Stress due to the intercalation of lithium in cubic-shaped particles: a parameter study. Meccanica 51(12):3081
Di Leo C, Rejovitzky E, Anand L (2014) A Cahn–Hilliard-type phase-field theory for species diffusion coupled with large elastic deformations: application to phase-separating Li-ion electrode materials. J Mech Phys Solids 70:1
Zhao K, Pharr M, Cai S, Vlassak J, Suo Z (2011) Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge. J Am Ceram Soc 94(s1):s226–s235
Bower AF, Guduru P (2012) A simple finite element model of diffusion, finite deformation, plasticity and fracture in lithium ion insertion electrode materials. Modell Simul Mater Sci Eng 20(4):045004
Anand L (2012) A Cahn–Hilliard-type theory for species diffusion coupled with large elastic-plastic deformations. J Mech Phys Solids 60(12):1983
Cui Z, Gao F, Qu J (2012) A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J Mech Phys Solids 60(7):1280
Bucci G, Nadimpalli S, Sethuraman V, Bower A, Guduru P (2014) Measurement and modeling of the mechanical and electrochemical response of amorphous Si thin film electrodes during cyclic lithiation. J Mech Phys Solids 62:276
Lyu D, Ren B, Li S (2019) Failure modes and mechanisms for rechargeable Lithium-based batteries: a state-of-the-art review. Acta Mech 230(3):701
Cogswell DA, Bazant MZ (2018) Size-dependent phase morphologies in LiFePO4 battery particles. Electrochem Commun 95:33
Nadkarni N, Rejovitsky E, Fraggedakis D, Di Leo CV, Smith RB, Bai P, Bazant MZ (2018) Interplay of phase boundary anisotropy and electro-auto-catalytic surface reactions on the lithium intercalation dynamics in Li X FePO 4 plateletlike nanoparticles. Phys Rev Mater 2(8):085406
Zhang T, Kamlah M (2019) Phase-field modeling of the particle size and average concentration dependent miscibility gap in nanoparticles of LixMn2O4, LixFePO4, and NaxFePO4 during insertion. Electrochim Acta 298:31
Bower A, Guduru P, Sethuraman V (2011) A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell. J Mech Phys Solids 59(4):804
Zhang T, Kamlah M (2020) Mechanically Coupled Phase-Field Modeling of Microstructure Evolution in Sodium Ion Batteries Particles of Na x FePO 4. J Electrochem Soc 167(2):020508
McDowell MT, Xia S, Zhu T (2016) The mechanics of large-volume-change transformations in high-capacity battery materials. Extreme Mech Lett 9:480
Huang S, Fan F, Li J, Zhang S, Zhu T (2013) Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries. Acta Mater 61(12):4354
Bower AF, Guduru PR, Chason E (2015) Analytical solutions for composition and stress in spherical elastic-plastic lithium-ion electrode particles containing a propagating phase boundary. Int J Solids Struct 69:328
Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L et al (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol 7(5):310
Sethuraman VA, Chon MJ, Shimshak M, Srinivasan V, Guduru PR (2010) In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J Power Sources 195(15):5062
Sethuraman VA, Van Winkle N, Abraham DP, Bower AF, Guduru PR (2012) Real-time stress measurements in lithium-ion battery negative-electrodes. J Power Sources 206:334
Nadimpalli SP, Sethuraman VA, Bucci G, Srinivasan V, Bower AF, Guduru PR (2013) On plastic deformation and fracture in Si films during electrochemical lithiation/delithiation cycling. J Electrochem Soc 160(10):A1885
Pharr M, Suo Z, Vlassak JJ (2014) Variation of stress with charging rate due to strain-rate sensitivity of silicon electrodes of Li-ion batteries. J Power Sources 270:569
Pharr M, Suo Z, Vlassak JJ (2013) Measurements of the fracture energy of lithiated silicon electrodes of Li-ion batteries. Nano Lett 13(11):5570
Sethuraman VA, Nguyen A, Chon MJ, Nadimpalli SP, Wang H, Abraham DP, Bower AF, Shenoy VB, Guduru PR (2013) Stress evolution in composite silicon electrodes during lithiation/delithiation. J Electrochem Soc 160(4):A739
Nadimpalli SP, Sethuraman VA, Abraham DP, Bower AF, Guduru PR (2015) Stress evolution in lithium-ion composite electrodes during electrochemical cycling and resulting internal pressures on the cell casing. J Electrochem Soc 162(14):A2656
Zhang Y, Luo Y, Fincher C, McProuty S, Swenson G, Banerjee S, Pharr M (2019) In-situ measurements of stress evolution in composite sulfur cathodes. Energy Storage Mater 16:491
Zhao K, Wang WL, Gregoire J, Pharr M, Suo Z, Vlassak JJ, Kaxiras E (2011) Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: a first-principles theoretical study. Nano Lett 11(7):2962
Huang S, Zhu T (2011) Atomistic mechanisms of lithium insertion in amorphous silicon. J Power Sources 196(7):3664
Yan X, Gouissem A, Sharma P (2015) Atomistic insights into Li-ion diffusion in amorphous silicon. Mech Mater 91:306
Yan X, Gouissem A, Guduru PR, Sharma P (2017) Elucidating the atomistic mechanisms underpinning plasticity in Li-Si nanostructures. Phys Rev Mater 1(5):055401
Darbaniyan F, Yan X, Sharma P (2020) An atomistic perspective on the effect of strain rate and lithium fraction on the mechanical behavior of silicon electrodes. J Appl Mech 87(3):031011
Koerver R, Aygn I, Leichtweiß T, Dietrich C, Zhang W, Binder JO, Hartmann P, Zeier WG, Janek J (2017) Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem Mater 29(13):5574
Zhang W, Schröder D, Arlt T, Manke I, Koerver R, Pinedo R, Weber DA, Sann J, Zeier WG, Janek J (2017) (Electro) chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries. J Mater Chem A 5(20):9929
Bucci G, Swamy T, Bishop S, Sheldon BW, Chiang YM, Carter WC (2017) The effect of stress on battery-electrode capacity. J Electrochem Soc 164(4):A645
Wan TH, Ciucci F (2020) Electro-chemo-mechanical modeling of solid-state batteries. Electrochim Acta 331:135355
Garcia R, Chiang Y, Carter W, Limthongkul P, Bishop C (2005) Microstructural modeling and design of rechargeable lithium-ion batterie. J Electrochem Soc 152(1):A255
Xu R, Yang Y, Yin F, Liu P, Cloetens P, Liu Y, Lin F, Zhao K (2019) Heterogeneous damage in Li-ion batteries: experimental analysis and theoretical modeling. J Mech Phys Solids 129:160
Renganathan S, Sikha G, Santhanagopalan S, White R (2010) Theoretical analysis of stresses in a lithium ion cel. J Electrochem Soc 157(2):A155
Christensen J (2010) Modeling diffusion-induced stress in Li-ion cells with porous electrodes. J Electrochem Soc 157(3):A366
Ferguson T, Bazant M (2012) Nonequilibrium thermodynamics of porous electrodes. J Electrochem Soc 159(12):A1967
Purkayastha R, McMeeking R (2012) A linearized model for lithium ion batteries and maps for their performance and failure. J Appl Mech 79(3):031021
Hofmann T, Westhoff D, Feinauer J, Andrä H, Zausch J, Schmidt V, Müller R (2020) Electro-chemo-mechanical simulation for lithium ion batteries across the scales. Int J Solids Struct 184:24
Yu HC, Taha D, Thompson T, Taylor NJ, Drews A, Sakamoto J, Thornton K (2019) Deformation and stresses in solid-state composite battery cathodes. J Power Sources 440:227116
Bucci G, Swamy T, Chiang YM, Carter WC (2017) Modeling of internal mechanical failure of all-solid-state batteries during electrochemical cycling, and implications for battery design. J Mater Chem A 5(36):19422
Bucci G, Talamini B, Balakrishna A, Chiang Y, Carter W (2018) Mechanical instability of electrode-electrolyte interfaces in solid-state batteries. Phys Rev Mater 2(10):105407
Mykhaylov M, Ganser M, Klinsmann M, Hildebrand F, Guz I, McMeeking R (2019) An elementary 1-dimensional model for a solid state lithium-ion battery with a single ion conductor electrolyte and a lithium metal negative electrode. J Mech Phys Solids 123:207
Bielefeld A, Weber DA, Janek J (2018) Microstructural modeling of composite cathodes for all-solid-state batteries. J Phys Chem C 123(3):1626
Bucci G, Swamy T, Chiang YM, Carter WC (2017) Random walk analysis of the effect of mechanical degradation on all-solid-state battery power. J Electrochem Soc 164(12):A2660
Al-Siraj M, Stein P, Xu BX (2020) The effect of morphology changes and mechanical stresses on the effective diffusivity of solid electrolyte for lithium ion batteries. J Electrochem Soc 167(2):020535
Bhandakkar T, Gao H (2010) Cohesive modeling of crack nucleation under diffusion induced stresses in a thin strip: Implications on the critical size for flaw tolerant battery electrodes. Int J Solids Struct 47(10):1424
Bhandakkar T, Gao H (2011) Cohesive modeling of crack nucleation in a cylindrical electrode under axisymmetric diffusion induced stresses. Int J Solids Struct 48(16–17):2304
Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83(10):1273
Borden M, Verhoosel C, Scott M, Hughes R, Landis C (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77
Miehe C, Welschinger F, Hofacker M (2010) A phase field model of electromechanical fracture. J Mech Phys Solids 58(10):1716
Klinsmann M, Rosato D, Kamlah M, McMeeking R (2016) Modeling crack growth during Li insertion in storage particles using a fracture phase field approach. J Mech Phys Solids 92:313–344
Klinsmann M, Rosato D, Kamlah M, McMeeking RM (2016) Modeling crack growth during Li extraction in storage particles using a fracture phase field approach. J Electrochem Soc 163(2):A102
Klinsmann M, Rosato D, Kamlah M, McMeeking RM (2016) Modeling crack growth during Li extraction and insertion within the second half cycle. J Power Sources 331:32
Hao F, Mukherjee PP (2018) Mesoscale analysis of the electrolyte-electrode interface in all-solid-state Li-ion batteries. J Electrochem Soc 165:A1857
Acknowledgements
C.V.D.L. acknowledges funding from the National Science Foundation under Award No. CMMI-1825132.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
In honor of Professor J. N. Reddy for his 75th Birthday.
Rights and permissions
About this article
Cite this article
Bistri, D., Afshar, A. & Di Leo, C.V. Modeling the chemo-mechanical behavior of all-solid-state batteries: a review.. Meccanica 56, 1523–1554 (2021). https://doi.org/10.1007/s11012-020-01209-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11012-020-01209-y