Skip to main content
Log in

An original numerical calculation method for impacting contact model of spur gear under lightly loaded condition

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this study, an impacting contact model of spur gear under lightly loaded condition is constructed by considering the pinion and the wheel as rigid body, in which the lubricant is modelled by a linear spring damper combination. The entire motion of the gear system is fell into three phases, i.e.,: meshing state, transient state and non-meshing state. An original numerical calculation method is proposed for this model, and its validation is confirmed by using the Co-simulation of Adams-Matlab/Simulink. Instead of using the Jacobian matrix, the proposed numerical method could effectively avoid the ill condition in the iteration on data resulting from the nonlinearity of gear backlash. The results in this study verified that the algorithm is useful not only can increase the accuracy, but also significantly decrease the calculation time of the entire system. And the original numerical calculation method is employed to illustrate and quantify the influences of the excitation frequency on the impacting contact model of spur gears.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\( x \) :

Dynamical transmission errors

\( \dot{x} \) :

Relative speed

\( \ddot{x} \) :

Relative acceleration

\( L \) :

Length of gear backlash

\( t \) :

Time in second

\( \Delta t_{0} \) :

Time interval for any given time \( t_{0} \)

\( T_{f} \) :

Time of one excitation period

\( \Delta t_{m} \) :

Time interval from lubricant contact to solid contact

\( t_{n} \) :

Time interval for the current step \( n{th} \)

\( \Delta t_{ \hbox{max} } \) :

Maximum time-step

\( \Delta t_{ \hbox{min} } \) :

Minimum time-step

\( I_{p,w} \) :

Rotational inertia of pinion and gear

\( \theta_{p,w} \) :

Rotational displacements of pinion and gear

\( \dot{\theta }_{p,w} \) :

Rotational velocity of pinion and gear

\( \ddot{\theta }_{p,w} \) :

Rotational acceleration of pinion and gear

\( R_{p,w} \) :

Base radius of pinion and gear

\( T_{w} \) :

Drag torque

\( T_{wm} \) :

Mean part of drag torque

\( T_{pw}^{j} \) :

Amplitude of vibratory part of the \( j{\text{th}} \) harmonic for drag torque

\( \emptyset_{j} \) :

Initial phase of the \( j{\text{th}} \) harmonic for drag torque

\( T_{p} \) :

Driving torque

\( T_{pm} \) :

Mean part of driving torque

\( T_{pp}^{i} \) :

Amplitude of vibratory part of the \( j{\text{th}} \) harmonic for driving torque

\( \vartheta_{i} \) :

Initial phase of the \( j{\text{th}} \) harmonic for driving torque

\( \omega \) :

Excitation frequency

\( \Pi \) :

Number of engine cylinders

\( \in_{{\Delta t}} \) :

Short time duration of impact

\( e \) :

Coefficient of restitution

\( a_{1,2,3} \) :

Intermediate variables for \( \Delta t_{m} \)

\( c,k,f_{m,p} \) :

Intermediate variables for government equation

\( \varepsilon \) :

Precision tolerant

\( N \) :

Initial resolution of numerical solution

\( K_{d,c} \) :

Lubricant stiffness of driving/coast side

\( C_{d,c} \) :

Lubricant stiffness driving/coast side

NCM:

Numerical calculation method

DTE:

Dynamic transmission error

References

  1. Li Y, Chen T, Wang X (2016) Non-linear dynamics of gear pair with dynamic backlash subjected to combined internal and external periodic excitations. J Vib Control 22(6):1693–1703

    Article  MathSciNet  Google Scholar 

  2. Moradi H, Salarieh H (2012) Analysis of nonlinear oscillations in spur gear pairs with approximated modelling of backlash nonlinearity. Mech Mach Theory 51:14–31

    Article  Google Scholar 

  3. Rocca E, Russo R (2011) Theoretical and experimental investigation into the influence of the periodic backlash fluctuations on the gear rattle. J Sound Vib 330(20):4378–4752

    Article  Google Scholar 

  4. Shen Y, Yang S, Liu X (2006) Nonlinear dynamics of a spur gear pair with time-varying stiffness and backlash based on incremental harmonic balance method. Int J Mech Sci 48(11):1256–1263

    Article  MATH  Google Scholar 

  5. Wang J, Wang H, Guo L (2015) Analysis of stochastic nonlinear dynamics in the gear transmission system with backlash. Int J Nonlinear Sci Numer Simul 16(2):111–121

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen S, Tang J, Luo C et al (2011) Nonlinear dynamic characteristics of geared rotor bearing systems with dynamic backlash and friction. Mech Mach Theory 46(4):466–478

    Article  MATH  Google Scholar 

  7. Baumann A, Bertsche B (2015) Experimental study on transmission rattle noise behaviour with particular regard to lubricating oil. J Sound Vib 341:195–205

    Article  ADS  Google Scholar 

  8. Brancati R, Rocca E, Russo R (2005) A gear rattle model accounting for oil squeeze between the meshing gear teeth. Proc Inst Mech Eng Part D J Automob Eng 219(9):1075–1083

    Article  Google Scholar 

  9. Brancati R, Rocca E, Russo R (2007) An analysis of the automotive driveline dynamic behaviour focusing on the influence of the oil squeeze effect on the idle rattle phenomenon. J Sound Vib 303(3):858–872

    Article  ADS  Google Scholar 

  10. Theodossiades S, Gnanakumarr M, Rahnejat H, Menday M (2004) Mode identification in impact-induced high-frequency vehicular driveline vibrations using an elasto-multi-body dynamics approach. Proc Inst Mech Eng Part K J Multi-body Dyn 218(2):81–94

    Google Scholar 

  11. Tangasawi O, Theodossiades S, Rahnejat H (2007) Lightly loaded lubricated impacts: idle gear rattle. J Sound Vib 308(3):418–430

    Article  ADS  Google Scholar 

  12. Theodossiades S, Tangasawi O, Rahnejat H (2007) Gear teeth impacts in hydrodynamic conjunctions promoting idle gear rattle. J Sound Vib 303(3–5):632–658

    Article  ADS  Google Scholar 

  13. Guilbault R, Lalonde S, Thomas M (2012) Nonlinear damping calculation in cylindrical gear dynamic modeling. J Sound Vib 331(9):2110–2128

    Article  ADS  Google Scholar 

  14. Liu F, Theodossiades S, Bergman LA, Vakakis AF, McFarland DM (2015) Analytical characterization of damping in gear teeth dynamics under hydrodynamic conditions. Mech Mach Theory 94:141–147

    Article  Google Scholar 

  15. Liu F (2016) Dynamic analysis of drag torque for spur gear pairs considering the double-sided films. Proc Inst Mech Eng Part C J Mech Eng Sci 231(12):2253–2262

    Article  Google Scholar 

  16. Padmanabhan C, Barlow R, Rook T, Singh R (1995) Computational issues associated with gear rattle analysis. J Mech Des 117(1):185–192

    Article  Google Scholar 

  17. Singh R, Xie H, Comparin R (1989) Analysis of automotive neutral grear rattle. J Sound Vib 131(2):177–196

    Article  ADS  Google Scholar 

  18. Liu F, Jiang H, Zhang L, Chen L (2017) Analysis vibration characteristic for helical gear under hydrodynamic conditions. Adv Mech Eng 9(1):1–9

    Google Scholar 

  19. Liu F, Jiang H, Liu S, Yu X (2016) Dynamic behavior analysis of spur gears with constant & variable excitations considering sliding friction influence. J Mech Sci Technol 30(12):5363–5370

    Article  Google Scholar 

  20. Rigaud E, Perret-Liaudet J (2020) Investigation of gear rattle noise including visualization of vibro-impact regimes. J Sound Vib 467:115026

    Article  Google Scholar 

  21. Kadmiri Y, Perret-Liaudet J, Rigaud E et al (2011) Influence of multi-harmonics excitation on rattle noise in automotive gearboxes. Adv Acoust Vib 2011:659797

    Google Scholar 

  22. Nordmark AB, Piiroinen PT (2009) Simulation and stability analysis of impacting systems with complete chattering. Nonlinear Dyn 58(1–2):85–106

    Article  MATH  Google Scholar 

  23. Osorio G, Di Bernardo M, Santini S (2005) Chattering and complex behavior of a cam-follower system. In: Proceedings of the European nonlinear dynamics conference (ENOC). Eindhoven

  24. Cross R, Nathan AM (2007) Experimental study of the gear effect in ball collisions. Am J Phys 75(7):658–664

    Article  ADS  Google Scholar 

  25. Luo ACJ, O’Connor D (2009) Mechanism of impacting chatter with stick in a gear transmission system. Int J Bifurc Chaos 19(06):2093–2105

    Article  MathSciNet  Google Scholar 

  26. Luo ACJ, O’Connor D (2009) Periodic motions and chaos with impacting chatter and stick in a gear transmission system. Int J Bifurc Chaos 19(06):1975–1994

    Article  MathSciNet  Google Scholar 

  27. Shampine LF, Reichelt MW (1997) The matlab ode suite. SIAM J Sci Comput 18(1):1–22

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from National Natural Science Foundation of China (Grant Nos. 51305378, 51605412), Jiangsu Provincial Science and Technology Department (BK20161312, BZ2018052), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 17KJB460016), Postdoctoral Research Foundation of China (2016M590643).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuhao Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Zhang, L., Jiang, H. et al. An original numerical calculation method for impacting contact model of spur gear under lightly loaded condition. Meccanica 55, 1435–1451 (2020). https://doi.org/10.1007/s11012-020-01173-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-020-01173-7

Keywords

Navigation