Skip to main content
Log in

Minimum-time optimal control of robotic manipulators based on Hamel’s integrators

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, we develop a framework of time optimization path planning for robotic manipulators surrounded by static obstacles. Our approach is based on the recursive dynamics method and Hamel’s integrators. We adopt the linear programming techniques to solve the problem of the collision avoidance expressed as state constraints. The resulting algorithm is simple to implement and the performance of this approach is demonstrated through two examples. Numerical results are shown to validate the efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lee SH, Kim J, Park FC, Kim M, Bobrow JE (2005) Newton-type algorithms for dynamics-based robot movement optimization. IEEE Trans Robot 21(4):657–667

    Article  Google Scholar 

  2. Kobilarov MB, Marsden JE (2011) Discrete geometric optimal control on Lie groups. IEEE Trans Robot 27(4):641–655

    Article  Google Scholar 

  3. Reiter A, Müller A, Gattringer H (2016) Inverse kinematics in minimum-time trajectory planning for kinematically redundant manipulators. In: IECON 2016-42nd annual conference of the IEEE industrial electronics society. IEEE, pp 6873–6878

  4. Gerdts M, Henrion R, Hömberg D, Landry C (2012) Path planning and collision avoidance for robots. Numer Algebra Control Optim 2(3):437–463

    Article  MathSciNet  Google Scholar 

  5. Shareef Z, Trächtler A (2016) Simultaneous path planning and trajectory optimization for robotic manipulators using discrete mechanics and optimal control. Robotica 34(6):1322–1334

    Article  Google Scholar 

  6. Hashem Zadeh SM, Khorashadizadeh S, Fateh MM, Hadadzarif M (2016) Optimal sliding mode control of a robot manipulator under uncertainty using PSO. Nonlinear Dyn 84(4):2227–2239. https://doi.org/10.1007/s11071-016-2641-4

    Article  MathSciNet  Google Scholar 

  7. Sintov A (2019) Goal state driven trajectory optimization. Auton Robots 43(3):631–648. https://doi.org/10.1007/s10514-018-9728-3

    Article  Google Scholar 

  8. Kahn ME, Roth B (1971) The near-minimum-time control of open-loop articulated kinematic chains. J Dyn Syst Meas Control 93(3):164–172

    Article  Google Scholar 

  9. Bobrow JE, Dubowsky S, Gibson J (1985) Time-optimal control of robotic manipulators along specified paths. Int J Robot Res 4(3):3–17

    Article  Google Scholar 

  10. Bobrow JE (1988) Optimal robot plant planning using the minimum-time criterion. IEEE J Robot Autom 4(4):443–450

    Article  Google Scholar 

  11. Hol CW, Van Willigenburg L, van Henten EJ, van Straten G (2001) A new optimization algorithm for singular and non-singular digital time-optimal control of robots. In: Proceedings 2001 ICRA. IEEE international conference on robotics and automation, vol 2. IEEE, pp 1136–1141

  12. Reiter A (2016) Time-optimal trajectory planning for redundant robots: joint space decomposition for redundancy resolution in non-linear optimization. Springer, Berlin

    Book  Google Scholar 

  13. Gilbert E, Johnson D (1985) Distance functions and their application to robot path planning in the presence of obstacles. IEEE J Robot Autom 1(1):21–30

    Article  Google Scholar 

  14. Melchiorri C (1997) Multiple whole-limb manipulation: an analysis in the force domain. Robot Auton Syst 20(1):15–38. https://doi.org/10.1016/S0921-8890(96)00027-9

    Article  Google Scholar 

  15. Shin K, McKay N (1986) A dynamic programming approach to trajectory planning of robotic manipulators. IEEE Trans Autom Control 31(6):491–500

    Article  Google Scholar 

  16. Singh S, Leu MC (1987) Optimal trajectory generation for robotic manipulators using dynamic programming. J Dyn Syst Meas Control 109(2):88–96

    Article  Google Scholar 

  17. Shareef Z, Trächtler A (2014) Joint selection criterion for optimal trajectory planning for robotic manipulators using dynamic programming. IFAC Proc Vol 47(3):6025–6031

    Article  Google Scholar 

  18. Shareef Z, Trächtler A (2014) Optimal trajectory planning for robotic manipulators using discrete mechanics and optimal control. In: 2014 IEEE conference on control applications (CCA). IEEE, pp 240–245

  19. Kim J, Baek J, Park FC (1999) Newton-type algorithms for robot motion optimization. In: Proceedings 1999 IEEE/RSJ international conference on intelligent robots and systems IROS’99, vol 3. IEEE, pp 1842–1847

  20. Park FC, Bobrow JE, Ploen SR (1995) A Lie group formulation of robot dynamics, vol 14. Sage Publications, Thousand Oaks

    Google Scholar 

  21. Lee J, Liu CK, Park FC, Srinivasa SS (2016) A linear-time variational integrator for multibody systems. In: International workshop on the algorithmic foundations of robotics

  22. Yang K, Yang W, Wang C (2018) Inverse dynamic analysis and position error evaluation of the heavy-duty industrial robot with elastic joints: an efficient approach based on Lie group. Nonlinear Dyn 93(2):487–504. https://doi.org/10.1007/s11071-018-4205-2

    Article  Google Scholar 

  23. Felis ML (2017) RBDL: an efficient rigid-body dynamics library using recursive algorithms. Auton Robots 41(2):495–511. https://doi.org/10.1007/s10514-016-9574-0

    Article  Google Scholar 

  24. Junge O, Marsden JE, Ober-Blöbaum S (2005) Discrete mechanics and optimal control. IFAC Proc Vol 38(1):538–543

    Article  Google Scholar 

  25. Marsden JE, West M (2001) Discrete mechanics and variational integrators. Cambridge University Press, Cambridge, pp 357–514

    MATH  Google Scholar 

  26. Pekarek D, Ames AD, Marsden JE (2007) Discrete mechanics and optimal control applied to the compass gait biped. In: 2007 46th IEEE conference on decision and control. IEEE, pp 5376–5382

  27. Leyendecker S, Ober-Blöbaum S, Marsden JE, Ortiz M (2007) Discrete mechanics and optimal control for constrained multibody dynamics. In: ASME 2007 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers, pp 623–632

  28. Leyendecker S, Ober-Blöbaum S, Marsden JE, Ortiz M (2010) Discrete mechanics and optimal control for constrained systems. Optim Control Appl Methods 31(6):505–528

    Article  MathSciNet  Google Scholar 

  29. Kobilarov, M, Desbrun, M, Marsden, JE, Sukhatme, G (2007) A discrete geometric optimal control framework for systems with symmetries. In: Proceedings of robotics: science and systems, Atlanta, GA, USA. https://doi.org/10.15607/RSS.2007.III.021

  30. Marsden JE, Pekarsky S, Shkoller S (1999) Discrete Euler–Poincaré and Lie–Poisson equations. Nonlinearity 12(6):1647

    Article  ADS  MathSciNet  Google Scholar 

  31. Leok M (2007) An overview of Lie group variational integrators and their applications to optimal control. In: International conference on scientific computation and differential equations, p 1

  32. Ball KR, Zenkov DV (2015) Hamel’s formalism and variational integrators. Springer, Berlin, pp 477–506

    MATH  Google Scholar 

  33. Zenkov DV, Leok M, Bloch AM (2012) Hamel’s formalism and variational integrators on a sphere. In: 2012 IEEE 51st annual conference on decision and control (CDC). IEEE, pp 7504–7510

  34. Bloch AM, Marsden JE, Zenkov DV (2009) Quasivelocities and symmetries in non-holonomic systems. Dyn Syst 24(2):187–222

    Article  MathSciNet  Google Scholar 

  35. Wang L, An Z, Shi D (2016) Hamel’s field variational integrator of geometrically exact beam. Acta Sci Nat Univ Pekin 52(4):16 (Chinese)

    MathSciNet  MATH  Google Scholar 

  36. Murray RM, Li Z, Sastry SS (1994) A mathematical introduction to robotic manipulation. CRC Press, Boca Raton

    MATH  Google Scholar 

  37. Ploen SR, Park FC (1999) Coordinate-invariant algorithms for robot dynamics. IEEE Trans Robotics Autom 15(6):1130–1135

    Article  Google Scholar 

  38. Berkovitz LD (2002) Convexity and optimization in \(\mathbb{R}^n\). Wiley, New York

    Book  Google Scholar 

  39. An Z, Gao S, Shi D, Zenkov DV a variational integrator for the Chaplygin–Timoshenko Sleigh, preprint

Download references

Acknowledgements

The authors would like to thank Prof. Dimitry V. Zenkov and the reviewers for their constructive suggestions. This project is supported by the National Natural Science Foundation of China (Grant Nos. 11872107, 11672032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghua Shi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Z., Wu, H. & Shi, D. Minimum-time optimal control of robotic manipulators based on Hamel’s integrators. Meccanica 54, 2521–2537 (2019). https://doi.org/10.1007/s11012-019-01093-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-019-01093-1

Keywords

Navigation