Skip to main content

Rain erosion of wind turbine blades: computational analysis of parameters controlling the surface degradation

Abstract

Parameters influencing the erosion behavior of the leading edges of wind turbine blade tips are investigated. Recent enhancements in structural sizes of wind turbines operating at extreme environments present critical challenges to performance and sustainability of wind energy production. In order to investigate the influence of the parameters controlling the erosion performance of the coatings under rain contacts, a systematic finite element simulation approach was implemented. Three main groups of parameters namely environmental, design, and manufacturing were investigated. The conducted investigations reveal desirable coating material characteristics and a simple indicator to select materials which protect leading edges against rain erosion. Moreover, the parameters such as surface properties, manufacturing aspects, and droplet shape were demonstrated to be critical in estimation of the coatings lifetime through numerical simulations. The introduced results provide a roadmap toward improved design of durable coatings for new wind turbine blades.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Mishnaevsky L (2019) Repair of wind turbine blades: review of methods and related computational mechanics problems. Renew Energy 140:828–839

    Article  Google Scholar 

  2. Gohardani O (2011) Impact of erosion testing aspects on current and future flight conditions. Prog Aerosp Sci 47:280–303. https://doi.org/10.1016/j.paerosci.2011.04.001

    Article  Google Scholar 

  3. Andersen KB (2018) Siemens makes billions: Ørsted must have repaired hundreds of mills. Finans

  4. Sareen A, Sapre CA, Selig MS (2012) Effects of leading-edge protection tape on wind turbine blade performance. Wind Eng 36:525–534

    Article  Google Scholar 

  5. Gaudern N (2014) A practical study of the aerodynamic impact of wind turbine blade leading edge erosion. In: Journal of physics: conference series. IOP Publishing, p 12031

  6. Wood K (2011) Blade repair: closing the maintenance gap. CW Composites World, 4/1/2011

  7. Mishnaevsky L Jr, Branner K, Petersen HN, Beauson J, McGugan M, Sørensen B (2017) Materials for wind turbine blades: an overview. Materials 10(11):1285

    Article  ADS  Google Scholar 

  8. Fraisse A, Bech JI, Borum KK et al (2018) Impact fatigue damage of coated glass fibre reinforced polymer laminate. Renew Energy 126:1102–1112

    Article  Google Scholar 

  9. Keegan MH, Nash DH, Stack MM (2013) On erosion issues associated with the leading edge of wind turbine blades. J Phys D Appl Phys 46:383001

    Article  ADS  Google Scholar 

  10. Keegan MH, Nash D, Stack M (2012) Modelling rain drop impact on offshore wind turbine blades. ASME Turbo Expo 2012 Article-GT

  11. Slot HM, Gelinck ERM, Rentrop C, Van Der Heide E (2015) Leading edge erosion of coated wind turbine blades: review of coating life models. Renew Energy 80:837–848

    Article  Google Scholar 

  12. Amirzadeh B, Louhghalam A, Raessi M, Tootkaboni M (2017) A computational framework for the analysis of rain-induced erosion in wind turbine blades, part I: stochastic rain texture model and drop impact simulations. J Wind Eng Ind Aerodyn 163:33–43

    Article  Google Scholar 

  13. Amirzadeh B, Louhghalam A, Raessi M, Tootkaboni M (2017) A computational framework for the analysis of rain-induced erosion in wind turbine blades, part II: drop impact-induced stresses and blade coating fatigue life. J Wind Eng Ind Aerodyn 163:44–54

    Article  Google Scholar 

  14. Mie G (1903) Zur kinetischen Theorie der einatomigen Körper. Ann Phys 316:657–697

    Article  Google Scholar 

  15. Grüneisen E (1912) Theorie des festen Zustandes einatomiger Elemente. Ann Phys 344:257–306

    Article  Google Scholar 

  16. Cook SS (1928) Erosion by water-hammer. Proc R Soc Lond Ser A Contain Pap Math Phys Charact 119:481–488

    ADS  Google Scholar 

  17. Dear JP, Field JE (1988) High-speed photography of surface geometry effects in liquid/solid impact. J Appl Phys 63:1015–1021. https://doi.org/10.1063/1.340000

    Article  ADS  Google Scholar 

  18. Tobin EF, Young TM, Raps D (2012) Evaluation and correlation of inter-laboratory results from a rain erosion test campaign. In: Proceedings of 28th international congress of the aeronautical sciences

  19. Siddons C, Macleod C, Yang L, Stack M (2015) An experimental approach to analysing rain droplet impingement on wind turbine blade materials. EWEA 2015 annu event

  20. Busch H, Hoff G, Langbein G (1966) Rain erosion properties of materials. Philoso Trans R Soc Lond Ser A Math Phys Sci 260(1110):168–178

    ADS  Google Scholar 

  21. Tobin EF, Young TM, Raps D, Rohr O (2011) Comparison of liquid impingement results from whirling arm and water-jet rain erosion test facilities. Wear 271:2625–2631. https://doi.org/10.1016/j.wear.2011.02.023

    Article  Google Scholar 

  22. Tcharkhtchi A, Farzaneh S, Abdallah-Elhirtsi S et al (2014) Thermal aging effect on mechanical properties of polyurethane. Int J Polym Anal Charact 19:571–584

    Article  Google Scholar 

  23. Stodola P, Jamrichova Z, Stodola J (2012) Modelling of erosion effects on coatings of military vehicle components. Trans FAMENA 36:33–44

    Google Scholar 

  24. King RB (1965) Rain erosion testing at supersonic speeds using rocket-propelled vehicles. In: Fyall AA, King RB (eds) Proceedings of the istlnt. Conference on rain erosion and association phenomenom, RAEFarnborough, UK, pp 49–57

  25. McDonald JE (1954) The shape and aerodynamics of large raindrops. J Meteorol 11:478–494

    Article  Google Scholar 

  26. Pruppacher HR, Beard KV (1970) A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Q J R Meteorol Soc 96:247–256

    Article  ADS  Google Scholar 

  27. Beard KV, Bringi VN, Thurai M (2010) A new understanding of raindrop shape. Atmos Res 97:396–415

    Article  Google Scholar 

  28. Beard KV, Chuang C (1987) A new model for the equilibrium shape of raindrops. J Atmos Sci 44:1509–1524

    Article  ADS  Google Scholar 

  29. Sagol E, Reggio M, Ilinca A (2013) Issues concerning roughness on wind turbine blades. Renew Sustain Energy Rev 23:514–525

    Article  Google Scholar 

  30. Dalili N, Edrisy A, Carriveau R (2009) A review of surface engineering issues critical to wind turbine performance. Renew Sustain Energy Rev 13:428–438

    Article  Google Scholar 

  31. Kirols HS, Kevorkov D, Uihlein A, Medraj M (2015) The effect of initial surface roughness on water droplet erosion behaviour. Wear 342:198–209

    Article  Google Scholar 

  32. Adler WF (1977) Liquid drop collisions on deformable media. J Mater Sci 12:1253–1271

    Article  ADS  Google Scholar 

  33. Najafabadi AH, Razavi RS, Mozaffarinia R, Rahimi H (2014) A new approach of improving rain erosion resistance of nanocomposite sol–gel coatings by optimization process factors. Metall Mater Trans A 45:2522–2531

    Article  Google Scholar 

  34. Mishnaevsky L Jr (2015) Nanostructured interfaces for enhancing mechanical properties of materials: computational micromechanical studies. Compos B 68:75–84

    Article  Google Scholar 

  35. Doagou-Rad S, Jensen JS, Islam A, Mishnaevsky L (2019) Multiscale molecular dynamics-FE modeling of polymeric nanocomposites reinforced with carbon nanotubes and graphene. Compos Struct 217:27–36. https://doi.org/10.1016/j.compstruct.2019.03.017

    Article  Google Scholar 

  36. Valaker EA, Armada S, Wilson S (2015) Droplet erosion protection coatings for offshore wind turbine blades. Energy Proc 80:263–275

    Article  Google Scholar 

  37. Syamsundar C, Chatterjee D, Kamaraj M, Maiti AK (2015) Erosion characteristics of nanoparticle-reinforced polyurethane coatings on stainless steel substrate. J Mater Eng Perform 24:1391–1405. https://doi.org/10.1007/s11665-015-1403-7

    Article  Google Scholar 

  38. Zhao W, Wang Y, Liu C et al (2010) Erosion–corrosion of thermally sprayed coatings in simulated splash zone. Surf Coat Technol 205:2267–2272. https://doi.org/10.1016/j.surfcoat.2010.09.011

    Article  Google Scholar 

  39. Mishnaevsky Jr. L, Fæster S, Mikkelsen L et al (2019) Micromechanisms of leading edge erosion of wind turbine blades: X-ray tomography analysis and computational studies. Wind Energy (accepted for publication)

  40. Eid KF, Panth M, Sommers AD (2018) The physics of water droplets on surfaces: exploring the effects of roughness and surface chemistry. Eur J Phys 39:25804

    Article  Google Scholar 

  41. Worthington AM, Cole RS (1897) Impact with a liquid surface studied by the aid of instantaneous photography. Philos Trans R Soc Lond Ser A Math Phys Sci 189:137–148. https://doi.org/10.1098/rsta.1897.0005

    Article  ADS  MATH  Google Scholar 

  42. Worthington AM, Cole RS (1900) Impact with a liquid surface studied by the aid of instantaneous photography. Paper II. Philos Trans R Soc London Ser A Contain Pap Math Phys Charact 194:175–199

    ADS  Google Scholar 

  43. Levin Z, Hobbs PV (1971) Splashing of water drops on solid and wetted surfaces: hydrodynamics and charge separation. Philos Trans R Soc London Ser A Math Phys Sci 269:555–585

    ADS  Google Scholar 

  44. Brunton JH (1967) Erosion by liquid shock. In: Fyall AA, King RB (ed) Proceedings International Conference Rain Erosion. pp 821–823

  45. Miller GF, Pursey H (1954) The field and radiation impedance of mechanical radiators on the free surface of a semi-infinite isotropic solid. Proc R Soc Lond Ser A Math Phys Sci 223:521–541

    ADS  MathSciNet  MATH  Google Scholar 

  46. Miller GF, Pursey H, Bullard EC (1955) On the partition of energy between elastic waves in a semi-infinite solid. Proc R Soc Lond Ser A Math Phys Sci 233:55–69

    ADS  MATH  Google Scholar 

  47. Haosheng C, Shihan L (2009) Inelastic damages by stress wave on steel surface at the incubation stage of vibration cavitation erosion. Wear 266:69–75

    Article  Google Scholar 

  48. Bowden FP, Brunton JH (1961) The deformation of solids by liquid impact at supersonic speeds. Proc R Soc Lond Ser A Math Phys Sci 263:433–450

    ADS  Google Scholar 

  49. Engel OG, Nakamura T (1974) Investigation of composite coating systems for rain-erosion protection. Florida Atlantic Univ, Boca Raton

    Book  Google Scholar 

  50. Mishnaevsky L Jr, Sütterlin J (2019) Micromechanical model of surface erosion of polyurethane coatings on wind turbine blades. Polym Degrad Stab 166:283–289

    Article  Google Scholar 

Download references

Acknowledgement

The authors kindly acknowledge the financial support of the Innovation Foundation of Denmark in the framework of the Grand Solutions project DURALEDGE, Durable leading edges for high tip speed wind turbine blades, File no.: 8055-00012A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Doagou-Rad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Doagou-Rad, S., Mishnaevsky, L. Rain erosion of wind turbine blades: computational analysis of parameters controlling the surface degradation. Meccanica 55, 725–743 (2020). https://doi.org/10.1007/s11012-019-01089-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-019-01089-x

Keywords

  • Wind energy
  • Modelling
  • Finite element
  • Erosion
  • Coating