Skip to main content
Log in

Deformation of flexible fibers in turbulent channel flow

  • Recent advances in modeling and simulations of multiphase flows
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, we examine from a statistical point of view the deformation of flexible fibers in turbulent channel flow. Fibers are longer than the Kolmogorov length scale of the carrier flow and have finite inertia. Our aim is to examine the effect of local shear and turbulence anisotropy on fiber twisting and bending, when shape effects add to the inertial bias. To these aims, we use an Eulerian–Lagrangian approach based on direct numerical simulation of turbulence in dilute flow conditions. Fibers are modelled as chains of sub-Kolmogorov rods (referred to as elements hereinafter) interconnected by holonomic constraints that enable relative rotation of neighbouring elements. Statistics are computed from simulations at shear Reynolds number \({\text{Re}}_{\tau }=150\), based on the channel half height, for fibers with different aspect ratio, \(\lambda _r\) (defined as the ratio between the length \(l_r\) of each element r composing the fiber and its cross-sectional radius, a), and different inertia, parameterized by the Stokes number of the element, \(St_r\). We show that bending of flexible fibers is in general stronger in the bulk of the flow, where they are subject to turbulent velocity fluctuations only. Near the wall, fibers are more easily stretched by the mean shear, especially for large-enough inertia (\(St_r > 5\) in our simulations). In spite of this different dynamics, which is connected to the anisotropy of the flow, we find that the fiber end-to-end distance reaches a steady state regardless of fiber location with respect to the wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Allende S, Henry C, Bec J (2018) Stretching and buckling of small elastic fibers in turbulence. Phys Rev Lett 121:154501

    ADS  Google Scholar 

  2. Andrić J, Fredriksson ST, Lindström SB, Sasic S, Nilsson H (2013) A study of a flexible fiber model and its behavior in DNS of turbulent channel flow. Acta Mech 224:2359

    MathSciNet  MATH  Google Scholar 

  3. Andrić J, Lindström SB, Sasic S, Nilsson H (2014) Rheological properties of dilute suspensions of rigid and flexible fibers. J Non-Newton Fluid Mech 212:36

    Google Scholar 

  4. Boer L, Buist KA, Deen NG, Padding JT, Kuipers JAM (2018) Experimental study on orientation and de-mixing phenomena of elongated particles in gas-fluidized beds. Powder Technol 329:332

    Google Scholar 

  5. Borgnino M, Gustavsson K, De Lillo F, Boffetta G, Cencini M, Mehlig B (2019) Alignment of non-spherical active particles in chaotic flows. Phys Rev Lett (Accepted paper)

  6. Bounoua S, Verhille G, Bartoli A (2018) Tumbling of inertial fibers in turbulence. Phys Rev Lett 121:124502

    ADS  Google Scholar 

  7. Brenner H, Cox RG (1963) The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers. J Fluid Mech 17:561

    ADS  MathSciNet  MATH  Google Scholar 

  8. Brenner H (1964) The Stokes resistance of an arbitrary particle IV. Arbitrary fields of flow. Chem Eng Sci 19:703

    Google Scholar 

  9. Brouzet C, Verhille G, Le Gal P (2014) Flexible fiber in a turbulent flow: a macroscopic polymer. Phys Rev Lett 112:074501

    ADS  Google Scholar 

  10. Byron M, Einarsson J, Gustavsson K, Voth G, Mehlig B, Variano E (2015) Shape-dependence of particle rotation in isotropic turbulence. Phys Fluids 27:035101

    ADS  Google Scholar 

  11. Clift R, Grace JR, Weber ME (1978) Bubbles, drops and particles. Academic Press, New York

    Google Scholar 

  12. Cox RG (1971) The motion of long slender bodies in a viscous fluid. Part 2. Shear flow. J Fluid Mech 45:625

    ADS  MATH  Google Scholar 

  13. Dotto D, Marchioli C (2019) Orientation, distribution and deformation of inertial flexible fibers in turbulent channel flow. Acta Mech 230:597–621

    MathSciNet  Google Scholar 

  14. Fan FG, Ahmadi G (1995) A sublayer model for wall deposition of ellipsoidal particles in turbulent streams. J Aerosol Sci 25:831

    Google Scholar 

  15. Gay A, Favier B, Verhille G (2018) Characterisation of flexible fibre deformations in turbulence. Europhys Lett 123:24001

    ADS  Google Scholar 

  16. Gustavsson K, Jucha J, Naso A, Lévêque E, Pumir A, Mehlig B (2017) Statistical model for the orientation of non-spherical particles settling in turbulence. Phys Rev Lett 119:254501

    ADS  Google Scholar 

  17. Hinch EJ, Leal LG (1979) Rotation of small non-axisymmetric particles in a simple shear flow. J Fluid Mech 92:591

    ADS  MathSciNet  MATH  Google Scholar 

  18. Hunt JCR, Wray A, Moin P. Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report, CTR-S88

  19. Jeffery GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc Lond Ser A 102:161

    ADS  MATH  Google Scholar 

  20. Joung CG, Phan-Thien N, Fan XJ (2001) Direct simulation of flexible fibers. J Non-Newton Fluid Mech 99:1

    MATH  Google Scholar 

  21. Kim S, Karrila SJ (1991) Microhydrodynamics: principles and selected applications. Butterworth-Heinemann, Stoneham

    Google Scholar 

  22. Kunhappan D, Harthong B, Chareyre B, Balarac G, Dumont PJJ (2017) Numerical modelling of high aspect ratio flexible fibers in inertial flows. Phys Fluids 29:093302

    ADS  Google Scholar 

  23. Lindström SB, Uesaka T (2008) Particle-level simulation of forming of the fiber network in papermaking. Int J Eng Sci 46:858

    Google Scholar 

  24. Lindström SB, Uesaka T (2007) Simulation of the motion of flexible fibers in viscous fluid flow. Phys Fluids 19:113307

    ADS  MATH  Google Scholar 

  25. Lovecchio S, Zonta F, Marchioli C, Soldati A (2017) Thermal stratification hinders gyrotactic micro-organism rising in free-surface turbulence. Phys Fluids 29:053302

    ADS  Google Scholar 

  26. Lovecchio S, Marchioli C, Soldati A (2013) Time persistence of floating particle clusters in free-surface turbulence. Phys Rev E 88:033003

    ADS  Google Scholar 

  27. Lundell F, Soderberg LD, Alfredsson PH (2011) Fluid mechanics of papermaking. Annu Rev Fluid Mech 43:195

    ADS  MATH  Google Scholar 

  28. Marchioli C, Zhao L, Andersson HI (2016) On the relative rotational motion between rigid fibers and fluid in turbulent channel flow. Phys Fluids 28:013301

    ADS  Google Scholar 

  29. Marchioli C, Soldati A (2013) Rotation statistics of fibers in wall shear turbulence. Acta Mech 224:2311

    MathSciNet  Google Scholar 

  30. Marchioli C, Fantoni M, Soldati A (2010) Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow. Phys Fluids 22:033301

    ADS  MATH  Google Scholar 

  31. Martínez M, Vernet A, Pallares J (2017) Clustering of long flexible fibers in two-dimensional flow fields for different Stokes numbers. Int J Heat Mass Transf 111:532

    Google Scholar 

  32. Mashayekhpour M, Marchioli C, Lovecchio S, Nemati Lay E, Soldati A (2019) Wind effect on gyrotactic micro-organism surfacing in free-surface turbulence. Adv Water Resour 129:328–337

    Google Scholar 

  33. Moffet RC, Prater KA (2009) In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates. Proc Natl Acad Sci 106:11872

    ADS  Google Scholar 

  34. Ni R, Ouellette NT, Voth GA (2014) Alignment of vorticity and rods with Lagrangian fluid stretching in turbulence. J Fluid Mech 743:R3

    ADS  Google Scholar 

  35. Ni R, Kramel S, Ouellette NT, Voth GA (2016) Measurements of the coupling between the tumbling of rods and the velocity gradient tensor in turbulence. J Fluid Mech 766:202–225

    ADS  Google Scholar 

  36. Parsa S, Guasto JS, Kishore M, Ouellette NT, Gollub JP, Voth GA (2011) Rotation and alignment of rods in two-dimensional chaotic flow. Phys Fluids 23:043302

    ADS  Google Scholar 

  37. Niazi Ardekani M, Brandt L (2019) Turbulence modulation in channel flow of finite-size spheroidal particles. J Fluid Mech 859:887

    ADS  MathSciNet  MATH  Google Scholar 

  38. Picciotto M, Marchioli C, Soldati A (2005) Characterization of near-wall accumulation regions for inertial particles in turbulent boundary layers. Phys Fluids 17:098101

    ADS  MATH  Google Scholar 

  39. Ravnik J, Marchioli C, Soldati A (2018) Application limits of Jeffery’s theory for elongated particle torques in turbulence: a DNS assessment. Acta Mech 229:827

    MathSciNet  Google Scholar 

  40. Rosti ME, Banaei AA, Brandt L, Mazzino A (2018) Flexible fiber reveals the two-point statistical properties of turbulence. Phys Rev Lett 121:044501

    ADS  Google Scholar 

  41. Sabban L, Cohen A, van Hout R (2017) Temporally resolved measurements of heavy, rigid fibre translation and rotation in nearly homogeneous isotropic turbulence. J Fluid Mech 814:42

    ADS  MathSciNet  MATH  Google Scholar 

  42. Sabban L, van Hout R (2011) Measurements of pollen grain dispersal in still air and stationary, near homogeneous, isotropic turbulence. J Aerosol Sci 42:867

    ADS  Google Scholar 

  43. Shapiro M, Goldenberg M (1993) Deposition of glass fiber particles from turbulent air flow in a pipe. J Aerosol Sci 24:65

    ADS  Google Scholar 

  44. Verhille G, Bartoli A (2016) 3D conformation of a flexible fiber in a turbulent flow. Exp Fluids 57:117

    Google Scholar 

  45. Voth GA, Soldati A (2017) Anisotropic particles in turbulence. Annu Rev Fluid Mech 49:249

    ADS  MathSciNet  MATH  Google Scholar 

  46. Xiang P, Kuznetsov AV (2008) Simulation of shape dynamics of a long flexible fiber in a turbulent flow in the hydro-entanglement process. Int Commun Heat Mass Transf 35:529

    Google Scholar 

  47. Yamamoto S, Matsuoka T (1993) A method for dynamic simulation of rigid and flexible fibers in a flow field. J Chem Phys 98:644

    ADS  Google Scholar 

  48. Zhan C, Sardina G, Lushi E, Brandt L (2014) Accumulation of motile elongated micro-organisms in turbulence. J Fluid Mech 739:22

    ADS  MathSciNet  Google Scholar 

  49. Zhang D, Smith DE (2016) Dynamic simulation of discrete fiber motion in fiber-reinforced composite materials processing. J Compos Mater 50:1301

    Google Scholar 

  50. Zhao L, Gustavsson K, Ni R, Kramel S, Voth G, Mehlig B. Orientation patterns of non-spherical particles in turbulence. arXiv:1707.06037v2 [physics.flu-dyn]

  51. Zhao L, Andersson HI (2016) Why spheroids orient preferentially in near-wall turbulence. J Fluid Mech 807:221

    ADS  MathSciNet  MATH  Google Scholar 

  52. Zhao L, Challabotla NR, Andersson HI, Variano EA (2019) Mapping spheroid rotation modes in turbulent channel flow: effects of shear, turbulence and particle inertia. J Fluid Mech 876:19

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Marchioli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dotto, D., Soldati, A. & Marchioli, C. Deformation of flexible fibers in turbulent channel flow. Meccanica 55, 343–356 (2020). https://doi.org/10.1007/s11012-019-01074-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-019-01074-4

Keywords

Navigation