Skip to main content
Log in

On the finite bending of functionally graded light-sensitive hydrogels

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Considering vast applications of light-sensitive hydrogels in designing sensors and actuators, in this article, a semi-analytical solution is developed for predicting the mechanical behavior of light-responsive hydrogels. Having continuous stress and deformation fields, the swelling of a functionally graded (FG) hydrogel strip is investigated under finite bending. Bending of FG hydrogel stems from the variation of cross-link density distribution along the thickness in the form of an exponential function which causes the layer to have an inhomogeneous swelling ratio. Furthermore, the finite element method is utilized to validate the accuracy of the presented solution by comparing the stress and deformation fields inside the light-sensitive FG hydrogel layer. A constitutive model for the light-sensitive hydrogels is modified in this paper to avoid multiple unstable solutions to arrive at a unique solution in various light intensities. Considering various applications of FG hydrogels, some designing factors are studied including the bending curvature, semi-angle, neutral axes and aspect ratio. In contrast to the layered structures, the swelling induced finite bending of an FG hydrogel gives continuous deformation and stress fields distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dehghany M, Zhang H, Naghdabadi R, Hu Y (2018) A thermodynamically-consistent large deformation theory coupling photochemical reaction and electrochemistry for light-responsive gels. J Mech Phys Solids 116:239–266

    Article  ADS  MathSciNet  Google Scholar 

  2. Suzuki A, Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature 346(6282):345

    Article  ADS  Google Scholar 

  3. Toh W, Ng TY, Hu J, Liu Z (2014) Mechanics of inhomogeneous large deformation of photo-thermal sensitive hydrogels. Int J Solids Struct 51(25–26):4440–4451

    Article  Google Scholar 

  4. Mazaheri H, Baghani M, Naghdabadi R (2016) Inhomogeneous and homogeneous swelling behavior of temperature-sensitive poly-(N-isopropylacrylamide) hydrogels. J Intell Mater Syst Struct 27(3):324–336

    Article  Google Scholar 

  5. Morimoto T, Ashida F (2015) Temperature-responsive bending of a bilayer gel. Int J Solids Struct 56:20–28

    Article  Google Scholar 

  6. Chester SA, Anand L (2011) A thermo-mechanically coupled theory for fluid permeation in elastomeric materials: application to thermally responsive gels. J Mech Phys Solids 59(10):1978–2006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Drozdov AD, Sommer-Larsen P (2016) Swelling of thermo-responsive gels under hydrostatic pressure. Meccanica 51(6):1419–1434

    Article  MathSciNet  MATH  Google Scholar 

  8. Shojaeifard M, Rouhani F, Baghani M (2019) A combined analytical–numerical analysis on multidirectional finite bending of functionally graded temperature-sensitive hydrogels. J Intell Mater Syst Struct. https://doi.org/10.1177/1045389X19849253

    Google Scholar 

  9. Marcombe R, Cai S, Hong W, Zhao X, Lapusta Y, Suo Z (2010) A theory of constrained swelling of a pH-sensitive hydrogel. Soft Matter 6(4):784–793

    Article  ADS  Google Scholar 

  10. Li P, Kim NH, Lee JH (2009) Swelling behavior of polyacrylamide/laponite clay nanocomposite hydrogels: pH-sensitive property. Compos B Eng 40(4):275–283

    Article  Google Scholar 

  11. Shojaeifard M, Bayat MR, Baghani M (2019) Swelling-induced finite bending of functionally graded pH-responsive hydrogels: a semi-analytical method. Appl Math Mech 40(5):679–694

    Article  Google Scholar 

  12. Attaran A, Brummund J, Wallmersperger T (2015) Modeling and simulation of the bending behavior of electrically-stimulated cantilevered hydrogels. Smart Mater Struct 24(3):035021

    Article  ADS  Google Scholar 

  13. Liu Q, Li H, Lam K (2017) Development of a multiphysics model to characterize the responsive behavior of magnetic-sensitive hydrogels with finite deformation. J Phys Chem B 121(22):5633–5646

    Article  Google Scholar 

  14. Duda FP, Souza AC, Fried E (2010) A theory for species migration in a finitely strained solid with application to polymer network swelling. J Mech Phys Solids 58(4):515–529

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Chester SA, Anand L (2010) A coupled theory of fluid permeation and large deformations for elastomeric materials. J Mech Phys Solids 58(11):1879–1906

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Drozdov A (2015) Equilibrium swelling of core–shell composite microgels. Meccanica 50(6):1579–1592

    Article  MathSciNet  MATH  Google Scholar 

  17. Bacca M, McMeeking RM (2017) A viscoelastic constitutive law for hydrogels. Meccanica 52(14):3345–3355

    Article  MathSciNet  MATH  Google Scholar 

  18. Richter A (2009) Hydrogels for actuators. In: Gerlach G, Arndt K-F (eds) Hydrogel sensors and actuators. Springer, Berlin, pp 221–248. https://doi.org/10.1007/978-3-540-75645-3_7

    Google Scholar 

  19. Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo B-H (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404(6778):588

    Article  ADS  Google Scholar 

  20. Wong AP, Perez-Castillejos R, Love JC, Whitesides G (2008) Partitioning microfluidic channels with hydrogel to construct tunable 3-D cellular microenvironments. Biomaterials 29(12):1853–1861

    Article  Google Scholar 

  21. Li H, Go G, Ko SY, Park J-O, Park S (2016) Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Mater Struct 25(2):027001

    Article  ADS  Google Scholar 

  22. Guo W, Li M, Zhou J (2013) Modeling programmable deformation of self-folding all-polymer structures with temperature-sensitive hydrogels. Smart Mater Struct 22(11):115028

    Article  ADS  Google Scholar 

  23. Li M, Jiang Z, An N, Zhou J (2018) Harnessing programmed holes in hydrogel bilayers to design soft self-folding machines. Int J Mech Sci 140:271–278

    Article  Google Scholar 

  24. Ionov L (2013) Biomimetic hydrogel-based actuating systems. Adv Funct Mater 23(36):4555–4570

    Article  Google Scholar 

  25. Valiollahi A, Shojaeifard M, Baghani M (2019) Closed form solutions for large deformation of cylinders under combined extension-torsion. Int J Mech Sci 157–158:336–347

    Article  Google Scholar 

  26. Flory PJ (1942) Thermodynamics of high polymer solutions. J Chem Phys 10(1):51–61

    Article  ADS  Google Scholar 

  27. Hong W, Liu Z, Suo Z (2009) Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. Int J Solids Struct 46(17):3282–3289

    Article  MATH  Google Scholar 

  28. Cai S, Suo Z (2011) Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels. J Mech Phys Solids 59(11):2259–2278

    Article  ADS  MATH  Google Scholar 

  29. Ding Z, Liu Z, Hu J, Swaddiwudhipong S, Yang Z (2013) Inhomogeneous large deformation study of temperature-sensitive hydrogel. Int J Solids Struct 50(16–17):2610–2619

    Article  Google Scholar 

  30. Hu Z, Zhang X, Li Y (1995) Synthesis and application of modulated polymer gels. Science 269(5223):525–527

    Article  ADS  Google Scholar 

  31. Arbabi N, Baghani M, Abdolahi J, Mazaheri H, Mashhadi MM (2017) Finite bending of bilayer pH-responsive hydrogels: a novel analytic method and finite element analysis. Compos B Eng 110:116–123

    Article  Google Scholar 

  32. Timoshenko S (1925) Analysis of bi-metal thermostats. JOSA 11(3):233–255

    Article  ADS  Google Scholar 

  33. Abdolahi J, Baghani M, Arbabi N, Mazaheri H (2017) Finite bending of a temperature-sensitive hydrogel tri-layer: an analytical and finite element analysis. Compos Struct 164:219–228

    Article  Google Scholar 

  34. Guvendiren M, Burdick JA, Yang S (2010) Kinetic study of swelling-induced surface pattern formation and ordering in hydrogel films with depth-wise crosslinking gradient. Soft Matter 6(9):2044–2049

    Article  ADS  Google Scholar 

  35. Guvendiren M, Burdick JA, Yang S (2010) Solvent induced transition from wrinkles to creases in thin film gels with depth-wise crosslinking gradients. Soft Matter 6(22):5795–5801

    Article  ADS  Google Scholar 

  36. Guvendiren M, Yang S, Burdick JA (2009) Swelling-induced surface patterns in hydrogels with gradient crosslinking density. Adv Funct Mater 19(19):3038–3045

    Article  Google Scholar 

  37. Wu Z, Bouklas N, Huang R (2013) Swell-induced surface instability of hydrogel layers with material properties varying in thickness direction. Int J Solids Struct 50(3–4):578–587

    Article  Google Scholar 

  38. Wu Z, Meng J, Liu Y, Li H, Huang R (2014) A state space method for surface instability of elastic layers with material properties varying in thickness direction. J Appl Mech 81(8):081003

    Article  Google Scholar 

  39. Wu Z, Bouklas N, Liu Y, Huang R (2017) Onset of swell-induced surface instability of hydrogel layers with depth-wise graded material properties. Mech Mater 105:138–147

    Article  Google Scholar 

  40. Roccabianca S, Gei M, Bigoni D (2010) Plane strain bifurcations of elastic layered structures subject to finite bending: theory versus experiments. IMA J Appl Math 75(4):525–548

    Article  MathSciNet  MATH  Google Scholar 

  41. Halliday D, Resnick R, Walker J (2013) Fundamentals of physics. Wiley, New York

    MATH  Google Scholar 

  42. Kierzenka J, Shampine LF (2008) A BVP solver that controls residual and error. J Numer Anal Ind Appl Math 3(1–2):27–41

    MathSciNet  MATH  Google Scholar 

  43. Byrd RH, Gilbert JC, Nocedal J (2000) A trust region method based on interior point techniques for nonlinear programming. Math Program 89(1):149–185

    Article  MathSciNet  MATH  Google Scholar 

  44. Valiollahi A, Shojaeifard M, Baghani M (2019) Implementing stretch-based strain energy functions in large coupled axial and torsional deformations of functionally graded cylinder. Int J Appl Mech. https://doi.org/10.1142/S175882511950039X

    Google Scholar 

  45. Afroze F, Nies E, Berghmans H (2000) Phase transitions in the system poly (N-isopropylacrylamide)/water and swelling behaviour of the corresponding networks. J Mol Struct 554(1):55–68

    Article  ADS  Google Scholar 

  46. Jewett JW, Serway RA (2008) Physics for scientists and engineers with modern physics. Thomson Learning, Belmont

    Google Scholar 

  47. Birgersson E, Li H, Wu S (2008) Transient analysis of temperature-sensitive neutral hydrogels. J Mech Phys Solids 56(2):444–466

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Baghani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaeifard, M., Baghani, M. On the finite bending of functionally graded light-sensitive hydrogels. Meccanica 54, 841–854 (2019). https://doi.org/10.1007/s11012-019-01004-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-019-01004-4

Keywords

Navigation