Skip to main content
Log in

Quasicontinuum multiscale modeling of the effect of rough surface on nanoindentation behavior

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Roughness of surface has as an important influence on identifying the mechanical behavior and performance of crystalline metals. In this study, nanoindentation simulations are conducted by the two dimensional quasicontinuum method to determine the load–penetration response and the critical load associated with the onset of plasticity in rough surfaces of a face-centered cubic single crystal copper. The arithmetic roughness index, ranging between 2 and 13 Å, is used to specify the roughness of surface. Results of indentation with different roughnesses are in good agreement with previous studies for the indenter size of 10–140 Å. The resultant load–penetration scattering, which stems from the roughness, indicates different dislocation nucleation steps, different subsequent dislocations intervals and varying stiffness values of samples. It can be concluded that the surface roughness has a significant effect on the first dislocation emission because of the indenter position and surface interactions beneath it. Moreover, the critical penetration depth for the first dislocation emission increases by the increase of the contact area between the indenter and surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Raikov YN, Ashikhmin GV, Nikolaev AK, Revina NI, Kostin SA (2007) Nanotechnology for copper and copper alloys. Metallurgist 51(7):408

    Article  Google Scholar 

  2. Paggi M, Zavarise G (2011) Contact mechanics of microscopically rough surfaces with graded elasticity. Eur J Mech A Solids 30(5):696–704

    Article  MATH  Google Scholar 

  3. Marshall JA (2015) Measuring copper surface roughness for high speed applications. In: IPC

  4. Fischer-Cripps AC (2013) Nanoindentation. Springer, New York

    Google Scholar 

  5. Schuh CA (2006) Nanoindentation studies of materials. Mater Today 9(5):32–40

    Article  Google Scholar 

  6. Jeng Y-R, Tan C-M (2003) Atomics statics approach. J Chin Soc Mech Eng 24(4):377–384

    Google Scholar 

  7. Bolesta A, Fomin V (2009) Molecular dynamics simulation of sphere indentation in a thin copper film. Phys Mesomech 12(3–4):117–123

    Article  Google Scholar 

  8. Peng P, Liao G, Shi T, Tang Z, Gao Y (2010) Molecular dynamic simulations of nanoindentation in aluminum thin film on silicon substrate. Appl Surf Sci 256(21):6284–6290

    Article  ADS  Google Scholar 

  9. Imran M, Hussain F, Rashid M, Ahmad S (2012) Molecular dynamics study of the mechanical characteristics of Ni/Cu bilayer using nanoindentation. Chin Phys B 21(12):126802

    Article  Google Scholar 

  10. Walter C, Mitterer C (2009) 3D versus 2D finite element simulation of the effect of surface roughness on nanoindentation of hard coatings. Surf Coat Technol 203(20):3286–3290

    Article  Google Scholar 

  11. Walter C, Antretter T, Daniel R, Mitterer C (2007) Finite element simulation of the effect of surface roughness on nanoindentation of thin films with spherical indenters. Surf Coat Technol 202(4):1103–1107

    Article  Google Scholar 

  12. Chen L, Ahadi A, Zhou J, Ståhl J-E (2014) Numerical and experimental study of the roughness effects on mechanical properties of AISI316L by nanoindentation. Model Numer Simul Mater Sci 4(04):153

    Google Scholar 

  13. Chen L, Ahadi A, Zhou J, Ståhl J-E (2016) Quantitative study of roughness effect in nanoindentation on AISI316L based on simulation and experiment. Proc Inst Mech Eng Part C J Mech Eng Sci 231:4067–4075

    Article  Google Scholar 

  14. Zhu P, Hu Y, Fang F, Wang H (2012) Multiscale simulations of nanoindentation and nanoscratch of single crystal copper. Appl Surf Sci 258(10):4624–4631

    Article  ADS  Google Scholar 

  15. Kiely J, Hwang R, Houston J (1998) Effect of surface steps on the plastic threshold in nanoindentation. Phys Rev Lett 81(20):4424

    Article  ADS  Google Scholar 

  16. Zimmerman J, Kelchner C, Klein P, Hamilton J, Foiles S (2001) Surface step effects on nanoindentation. Phys Rev Lett 87(16):165507

    Article  ADS  Google Scholar 

  17. Bouzakis KD, Michailidis N, Hadjiyiannis S, Skordaris G, Erkens G (2002) The effect of specimen roughness and indenter tip geometry on the determination accuracy of thin hard coatings stress–strain laws by nanoindentation. Mater Charact 49(2):149–156

    Article  Google Scholar 

  18. Donnelly E, Baker SP, Boskey AL, van der Meulen MCH (2006) Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation. J Biomed Mater Res Part A 77(2):426–435

    Article  Google Scholar 

  19. Boccaccio A, Uva AE, Papi M, Fiorentino M, De Spirito M, Monno G (2016) Nanoindentation characterisation of human colorectal cancer cells considering cell geometry, surface roughness and hyperelastic constitutive behaviour. Nanotechnology 28(4):045703

    Article  ADS  Google Scholar 

  20. Zhang T-Y, Xu W-H (2002) Surface effects on nanoindentation. J Mater Res 17(7):1715–1720

    Article  ADS  Google Scholar 

  21. Zhang T-Y, Xu W-H, Zhao M-H (2004) The role of plastic deformation of rough surfaces in the size-dependent hardness. Acta Mater 52(1):57–68

    Article  Google Scholar 

  22. Qasmi M, Delobelle P (2006) Influence of the average roughness Rms on the precision of the Young’s modulus and hardness determination using nanoindentation technique with a Berkovich indenter. Surf Coat Technol 201(3):1191–1199

    Article  Google Scholar 

  23. de Souza GB, Foerster CE, de Silva SLR, Lepienski CM (2006) Nanomechanical properties of rough surfaces. Materials Research 9(2):159–163

    Article  Google Scholar 

  24. Kim J-Y, Kang S-K, Lee J-J, Jang J-I, Lee Y-H, Kwon D (2007) Influence of surface-roughness on indentation size effect. Acta Mater 55(10):3555–3562

    Article  Google Scholar 

  25. Xia Y, Bigerelle M, Bouvier S, Iost A, Mazeran PE (2015) Quantitative approach to determine the mechanical properties by nanoindentation test: application on sandblasted materials. Tribol Int 82:297–304

    Article  Google Scholar 

  26. Saber-Samandari S, Gross KA (2009) Effect of angled indentation on mechanical properties. J Eur Ceram Soc 29(12):2461–2467

    Article  Google Scholar 

  27. Hansson P (2016) Influence of surface roughening on indentation behavior of thin copper coatings using a molecular dynamics approach. Comput Mater Sci 117:233–239

    Article  Google Scholar 

  28. Tadmor E, Miller R, Phillips R, Ortiz M (1999) Nanoindentation and incipient plasticity. J Mater Res 14(6):2233–2250

    Article  ADS  Google Scholar 

  29. Miller R, Tadmor E, Phillips R, Ortiz M (1998) Quasicontinuum simulation of fracture at the atomic scale. Modell Simul Mater Sci Eng 6(5):607

    Article  ADS  Google Scholar 

  30. Shenoy VB, Miller R, Tadmor EB, Rodney D, Phillips R, Ortiz M (1999) An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method. J Mech Phys Solids 47(3):611–642

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Alizadeh O, Tolooei Eshlaghi G, Mohammadi S (2016) Nanoindentation simulation of coated aluminum thin film using quasicontinuum method. Comput Mater Sci 111:12–22

    Article  Google Scholar 

  32. Zhu A, He D, He R, Zou C (2016) Nanoindentation simulation on single crystal copper by quasi-continuum method. Mater Sci Eng A 674:76–81

    Article  Google Scholar 

  33. Fanlin Z, Yi S (2006) Quasicontinuum simulation of nanoindentation of nickel film. Acta Mech Solida Sin 19(4):283–288

    Article  Google Scholar 

  34. Jiang W-G, Su J-J, Feng X-Q (2008) Effect of surface roughness on nanoindentation test of thin films. Eng Fract Mech 75(17):4965–4972

    Article  Google Scholar 

  35. Lu H, Li J, Ni Y (2011) Position effect of cylindrical indenter on nanoindentation into Cu thin film by multiscale analysis. Comput Mater Sci 50(10):2987–2992

    Article  Google Scholar 

  36. Yu W, Shen S (2009) Effects of small indenter size and its position on incipient yield loading during nanoindentation. Mater Sci Eng A 526(1):211–218

    Article  Google Scholar 

  37. Mei J, Li J, Ni Y, Wang H (2010) Multiscale simulation of indentation, retraction and fracture processes of nanocontact. Nanoscale Res Lett 5(4):692

    Article  ADS  Google Scholar 

  38. Jiang WG, Wang ZW (2012) Effect of surface roughness on nanocontact: quasicontinuum simulation. Advanced materials research. Trans Tech Publications 502:342–347

    Article  Google Scholar 

  39. Amelang JS, Kochmann DM (2015) Surface effects in nanoscale structures investigated by a fully-nonlocal energy-based quasicontinuum method. Mech Mater 90:166–184

    Article  Google Scholar 

  40. Amelang J, Venturini G, Kochmann D (2015) Summation rules for a fully nonlocal energy-based quasicontinuum method. J Mech Phys Solids 82:378–413

    Article  ADS  MathSciNet  Google Scholar 

  41. Dobson M, Luskin M (2008) Analysis of a force-based quasicontinuum approximation. ESAIM Math Modell Numer Anal 42(1):113–139

    Article  MathSciNet  MATH  Google Scholar 

  42. Shan D, Yuan L, Guo B (2005) Multiscale simulation of surface step effects on nanoindentation. Mater Sci Eng A 412(1):264–270

    Article  Google Scholar 

  43. Lu H, Ni Y (2012) Effect of surface step on nanoindentation of thin films by multiscale analysis. Thin Solid Films 520(15):4934–4940

    Article  ADS  Google Scholar 

  44. Zhang Z, Ni Y (2012) Multiscale analysis of delay effect of dislocation nucleation with surface pit defect in nanoindentation. Comput Mater Sci 62:203–209

    Article  Google Scholar 

  45. Wu J-J (2000) Simulation of rough surfaces with FFT. Tribol Int 33(1):47–58

    Article  Google Scholar 

  46. Tao Q, Lee HP, Lim SP (2001) Contact mechanics of surfaces with various models of roughness descriptions. Wear 249(7):539–545

    Article  Google Scholar 

  47. Zahouani H, Sidoroff F (2001) Rough surfaces and elasto-plastic contacts. C R Acad Sci Ser IV Phys 2(5):709–715

    Google Scholar 

  48. Thomas TR (1998) Rough surfaces. World Scientific, Singapore

    Book  Google Scholar 

  49. Bora CK, Flater EE, Street MD, Redmond JM, Starr MJ, Carpick RW, Plesha ME (2005) Multiscale roughness and modeling of MEMS interfaces. Tribol Lett 19(1):37–48

    Article  Google Scholar 

  50. Persson BNJ (2006) Contact mechanics for randomly rough surfaces. Surf Sci Rep 61(4):201–227

    Article  ADS  Google Scholar 

  51. Miller M, Bobko C, Vandamme M, Ulm F-J (2008) Surface roughness criteria for cement paste nanoindentation. Cem Concr Res 38(4):467–476

    Article  Google Scholar 

  52. Bayesteh H, Mohammadi S (2017) Micro-based enriched multiscale homogenization method for analysis of heterogeneous materials. Int J Solids Struct 125:22–42

    Article  Google Scholar 

  53. Dehaghani PF, Ardakani SH, Bayesteh H, Mohammadi S (2017) 3D hierarchical multiscale analysis of heterogeneous SMA based materials. Int J Solids Struct 118:24–40

    Article  Google Scholar 

  54. Eftekhari M, Ardakani SH, Mohammadi S (2014) An XFEM multiscale approach for fracture analysis of carbon nanotube reinforced concrete. Theor Appl Fract Mech 72:64–75

    Article  Google Scholar 

  55. Tadmor EB, Ortiz M, Phillips R (1996) Quasicontinuum analysis of defects in solids. Philos Mag A 73(6):1529–1563

    Article  ADS  Google Scholar 

  56. Shenoy V, Shenoy V, Phillips R (1998) Finite temperature quasicontinuum methods. In: MRS online proceedings library archive, vol 538

  57. ISO standard 4287 (1997) International Organization for Standardization

  58. Berke P, Massart TJ (2011) Coupled friction and roughness surface effects in shallow spherical nanoindentation. In: Zavarise G, Wriggers P (eds) Trends in computational contact mechanics. Springer, Berlin, pp 269–289

    Chapter  MATH  Google Scholar 

  59. Li J, Ni Y, Wang H, Mei J (2010) Effects of crystalline anisotropy and indenter size on nanoindentation by multiscale simulation. Nanoscale Res Lett 5(2):420

    Article  ADS  Google Scholar 

  60. Foiles S, Baskes M, Daw M (1986) Embedded-atom-method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33(12):7983

    Article  ADS  Google Scholar 

  61. Fian A, Leisch M (2003) Study on tip–substrate interactions by STM and APFIM. Ultramicroscopy 95:189–197

    Article  Google Scholar 

  62. Hagelaar JHA, Bitzek E, Flipse CFJ, Gumbsch P (2006) Atomistic simulations of the formation and destruction of nanoindentation contacts in tungsten. Phys Rev B 73(4):045425

    Article  ADS  Google Scholar 

  63. Trouwborst ML, Huisman EH, Bakker FL, van der Molen SJ, van Wees BJ (2008) Single atom adhesion in optimized gold nanojunctions. Phys Rev Lett 100(17):175502

    Article  ADS  Google Scholar 

  64. Minor AM, Asif SS, Shan Z, Stach EA, Cyrankowski E, Wyrobek TJ, Warren OL (2006) A new view of the onset of plasticity during the nanoindentation of aluminium. Nat Mater 5(9):697–702

    Article  ADS  Google Scholar 

  65. Bobji M, Shivakumar K, Alehossein H, Venkateshwarlu V, Biswas S (1999) Influence of surface roughness on the scatter in hardness measurements—a numerical study. Int J Rock Mech Min Sci 36(3):399–404

    Article  Google Scholar 

  66. Picu RC (2000) Atomistic-continuum simulation of nano-indentation in molybdenum. J Comput Aided Mater Des 7(2):77–87

    Article  ADS  Google Scholar 

  67. Medina S, Dini D (2014) A numerical model for the deterministic analysis of adhesive rough contacts down to the nano-scale. Int J Solids Struct 51(14):2620–2632

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the High Performance Computing Laboratory (HPC Lab), University of Tehran for the technical support. The authors wish to express their thanks to Professor E. Tadmor for his open source quasicontinuum code. The financial supports of Iran National Science Foundation (INSF) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheil Mohammadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moslemzadeh, H., Alizadeh, O. & Mohammadi, S. Quasicontinuum multiscale modeling of the effect of rough surface on nanoindentation behavior. Meccanica 54, 411–427 (2019). https://doi.org/10.1007/s11012-019-00956-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-019-00956-x

Keywords

Navigation