Skip to main content
Log in

Thermal buckling and postbuckling behavior of FG-GRC laminated cylindrical shells with temperature-dependent material properties

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Thermal postbuckling analysis is presented for graphene-reinforced composite (GRC) laminated cylindrical shells under a uniform temperature field. The GRC layers are arranged in a functionally graded (FG) graphene reinforcement pattern by varying the graphene volume fraction in each GRC layer. The GRCs possess temperature dependent and anisotropic material properties and the extended Halpin–Tsai model is employed to evaluate the GRC material properties. The governing equations are based on a higher order shear deformation shell theory and include the von Kármán-type kinematic nonlinearity and the thermal effects. A singular perturbation method in conjunction with a two-step perturbation approach is applied to determine the thermal postbuckling equilibrium path for a GRC shell with or without geometric imperfection. An iterative scheme is developed to obtain numerical thermal buckling temperatures and thermal postbuckling load–deflection curves for the shells. The results reveal that the FG-X piece-wise FG graphene distribution can enhance the thermal postbuckling capacity of the shells when the shells are subjected to a uniform temperature loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shen H-S (2004) Thermal postbuckling behavior of functionally graded cylindrical shells with temperature-dependent properties. Int J Solids Struct 41:1961–1974

    Article  MATH  Google Scholar 

  2. Shen H-S (2007) Thermal postbuckling of shear deformable FGM cylindrical shells with temperature-dependent properties. Mech Adv Mater Struct 14:439–452

    Article  Google Scholar 

  3. Shen H-S (2013) Thermal postbuckling of shear deformable FGM cylindrical shells surrounded by an elastic medium. J Eng Mech ASCE 139:979–991

    Article  Google Scholar 

  4. Mirzavand B, Eslami MR (2008) Thermoelastic stability analysis of imperfect functionally graded cylindrical shells. J Mech Mater Struct 3:1561–1572

    Article  Google Scholar 

  5. Sofiyev AH (2011) Thermal buckling of FGM shells resting on a two-parameter elastic foundation. Thin-Walled Struct 49:1304–1311

    Article  Google Scholar 

  6. Bagherizadeh E, Kiani Y, Eslami MR (2012) Thermal buckling of functionally graded material cylindrical shells on elastic foundation. AIAA J 50:500–503

    Article  ADS  Google Scholar 

  7. Shariyat M, Asgari D (2013) Nonlinear thermal buckling and postbuckling analyses of imperfect variable thickness temperature-dependent bidirectional functionally graded cylindrical shells. Int J Press Vessels Pip 111:310–320

    Article  Google Scholar 

  8. Boroujerdy MS, Naj R, Kiani Y (2014) Buckling of heated temperature dependent FGM cylindrical shell surrounded by elastic medium. J Theor Appl Mech 52:869–881

    Google Scholar 

  9. Akbari M, Kiani Y, Eslami MR (2015) Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports. Acta Mech 226:897–915

    Article  MathSciNet  MATH  Google Scholar 

  10. Sofiyev AH, Zerin Z, Kuruoglu N (2017) Thermoelastic buckling of FGM conical shells under non-linear temperature rise in the framework of the shear deformation theory. Compos Part B Eng 108:279–290

    Article  Google Scholar 

  11. Trabelsi S, Frikha A, Zghal S, Dammak F (2018) Thermal post-buckling analysis of functionally graded material structures using a modified FSDT. Int J Mech Sci 144:74–89

    Article  Google Scholar 

  12. Shen H-S (2012) Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells. Compos Part B-Eng 43:1030–1038

    Article  Google Scholar 

  13. Mirzaei M, Kiani Y (2015) Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells. Aerosp Sci Technol 47:42–53

    Article  MATH  Google Scholar 

  14. Duc ND, Cong PH, Tuan ND, Tran P, Thanh NV (2017) Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations. Thin-Walled Struct 115:300–310

    Article  Google Scholar 

  15. Ni Z, Bu H, Zou M, Yi H, Bi K, Chen Y (2010) Anisotropic mechanical properties of graphene sheets from molecular dynamics. Phys B 405:1301–1306

    Article  ADS  Google Scholar 

  16. Reddy CD, Rajendran S, Liew KM (2006) Equilibrium configuration and elastic properties of finite graphene. Nanotechnology 17:864–870

    Article  ADS  Google Scholar 

  17. Shen L, Shen H-S, Zhang C-L (2010) Temperature-dependent elastic properties of single layer graphene sheets. Mater Des 31:4445–4449

    Article  Google Scholar 

  18. Giannopoulos GI, Kallivokas IG (2014) Mechanical properties of graphene based nanocomposites incorporating a hybrid interphase. Finite Elem Anal Des 90:31–40

    Article  Google Scholar 

  19. Zhao X, Zhang Q, Hao Y, Li Y, Fang Y, Chen D (2010) Alternate multilayer films of poly(vinyl alcohol) and exfoliated graphene oxide fabricated via a facial Layer-by-Layer assembly. Macromolecules 43:9411–9416

    Article  ADS  Google Scholar 

  20. Liang Q, Yao X, Wang W, Liu Y, Wong CP (2011) A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials. ACS Nano 5:2392–2401

    Article  Google Scholar 

  21. Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z-Z, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890

    Article  Google Scholar 

  22. Milani MA, González D, Quijada R, Basso NRS, Cerrada ML, Azambuja DS, Galland GB (2013) Polypropylene/graphene nanosheet nanocomposites by in situ polymerization: synthesis, characterization and fundamental properties. Compos Sci Technol 84:1–7

    Article  Google Scholar 

  23. Putz KW, Compton OC, Palmeri MJ, Nguyen ST, Brinson LC (2010) High-nanofiller-content graphene oxide-polymer nanocomposites via vacuum-assisted self-assembly. Adv Funct Mater 20:3322–3329

    Article  Google Scholar 

  24. Shen H-S, Xiang Y, Lin F (2017) Thermal buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations. Thin-Walled Struct 118:229–237

    Article  Google Scholar 

  25. Wu H, Kitipornchai S, Yang J (2017) Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates. Mater Des 132:430–441

    Article  Google Scholar 

  26. Sahmani S, Aghdam MM (2017) Axial postbuckling analysis of multilayer functionally graded composite nanoplates reinforced with GPLs based on nonlocal strain gradient theory. Euro Phys J Plus 132:490

    Article  Google Scholar 

  27. Gholami R, Ansari R (2018) Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular plates. Eng Struct 156:197–209

    Article  Google Scholar 

  28. Wang Y, Feng C, Zhao Z, Lu F, Yang J (2018) Torsional buckling of graphene platelets (GPLs) reinforced functionally graded cylindrical shell with cutout. Compos Struct 197:72–79

    Article  Google Scholar 

  29. Yang Z, Yang J, Liu A, Fu J (2018) Nonlinear in-plane instability of functionally graded multilayer graphene reinforced composite shallow arches. Compos Struct 204:301–312

    Article  Google Scholar 

  30. Mirzaei M, Kiani Y (2017) Isogeometric thermal buckling analysis of temperature dependent FG graphene reinforced laminated plates using NURBS formulation. Compos Struct 180:606–616

    Article  Google Scholar 

  31. Kiani Y (2018) NURBS-based isogeometric thermal postbuckling analysis of temperature dependent graphene reinforced composite laminated plates. Thin-Walled Struct 125:211–219

    Article  Google Scholar 

  32. Kiani Y, Mirzaei M (2018) Enhancement of non-linear thermal stability of temperature dependent laminated beams with graphene reinforcements. Compos Struct 186:114–122

    Article  Google Scholar 

  33. Shen H-S (2011) Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, part I: axially-loaded shells. Compos Struct 93:2096–2108

    Article  Google Scholar 

  34. García-Macías E, Rodríguez-Tembleque L, Sáez A (2018) Bending and free vibration analysis of functionally graded graphene vs. carbon nanotube reinforced composite plates. Compos Struct 186:123–138

    Article  Google Scholar 

  35. Sperling LH (2006) Introduction to physical polymer science, 4th edn. Wiley, Hoboken

    Google Scholar 

  36. Halpin JC, Kardos JL (1976) The Halpin–Tsai equations: a review. Polym Eng Sci 16:344–352

    Article  Google Scholar 

  37. Hu K, Kulkarni DD, Choi I, Tsukruk VV (2014) Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci 39:1934–1972

    Article  Google Scholar 

  38. Lin F, Xiang Y, Shen H-S (2017) Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites—a molecular dynamics simulation. Compos Part B-Eng 111:261–269

    Article  Google Scholar 

  39. Reddy JN, Liu CF (1985) A higher-order shear deformation theory of laminated elastic shells. Int J Eng Sci 23:319–330

    Article  MATH  Google Scholar 

  40. Shen H-S (2017) Postbuckling behavior of plates and shells. World Scientific Publishing Co. Pte. Ltd., Singapore

    Book  Google Scholar 

  41. Bushnell D, Smith S (1971) Stress and buckling of nonuniformly heated cylindrical and conical shells. AIAA J 9:2314–2321

    Article  ADS  Google Scholar 

  42. Shen H-S (2013) A two-step perturbation method in nonlinear analysis of beams, plates and shells. Wiley, New York

    Book  MATH  Google Scholar 

  43. Shen H-S (2001) Thermal postbuckling behavior of imperfect shear deformable laminated plates with temperature-dependent properties. Comput Methods Appl Mech Eng 190:5377–5390

    Article  ADS  MATH  Google Scholar 

  44. Asadi H, Kiani Y, Aghdam MM, Shakeri M (2016) Enhanced thermal buckling of laminated composite cylindrical shells with shape memory alloy. J Compos Mater 50:243–256

    Article  Google Scholar 

  45. Shen H-S (2008) Thermal postbuckling behavior of anisotropic laminated cylindrical shells with temperature-dependent properties. AIAA J 46:185–193

    Article  ADS  Google Scholar 

  46. Shen H-S (1997) Kármán-type equations for a higher-order shear deformation plate theory and its use in the thermal postbuckling analysis. Appl Math Mech 18:1137–1152

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The supports for this work, provided by the National Natural Science Foundation of China (NSFC) Grant 51779138, and the Australian Research Council (ARC) Grant DP140104156 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Shen Shen.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interests with publication of this work.

Appendices

Appendix 1

In Eqs. (13b) and (14), the reduced stiffness matrices [A * ij ], [B * ij ], [D * ij ], [E * ij ], [F * ij ] and [H * ij ] are determined through relationships [46]

$$ {\mathbf{A}}^{*} = {\mathbf{A}}^{ - 1} ,\,\,{\mathbf{B}}^{*} = - {\mathbf{A}}^{ - 1} {\mathbf{B}},\,\,{\mathbf{E}}^{*} = - {\mathbf{A}}^{ - 1} {\mathbf{E}},\,\,{\mathbf{D}}^{*} = {\mathbf{D}} - {\mathbf{BA}}^{ - 1} {\mathbf{B}},\,\,{\mathbf{F}}^{*} = {\mathbf{F}} - {\mathbf{EA}}^{ - 1} {\mathbf{B}},\,\,{\mathbf{H}}^{*} = {\mathbf{H}} - {\mathbf{EA}}^{ - 1} {\mathbf{E}} $$
(32)

in which Aij, Bij, Dij, etc., are the shell panel stiffnesses that are defined by

$$ (A_{ij} ,B_{ij} ,D_{ij} ,E_{ij} ,F_{ij} ,H_{ij} ) = \sum\limits_{k = 1}^{N} {\int\limits_{{t_{k - 1} }}^{{t_{k} }} {(\mathop {\bar{Q}_{ij} )_{k} }\limits^{{}} } } (1,Z,Z^{2} ,Z^{3} ,Z^{4} ,Z^{6} )dZ\quad \left( {i,j = 1,2,6} \right) $$
(33a)
$$ (A_{ij} ,D_{ij} ,F_{ij} ) = \sum\limits_{k = 1}^{N} {\int\limits_{{t_{k - 1} }}^{{t_{k} }} {(\mathop {\bar{Q}_{ij} )_{k} }\limits^{{}} } } (1,Z^{2} ,Z^{4} )dZ\quad \left( {i,j = 4,5} \right) $$
(33b)

Appendix 2

The solutions W, Ψx, Ψy and F in the thermal postbuckling region may be expressed as

$$ \begin{aligned} W & = \varepsilon \left[ {A_{00}^{(1)} - A_{00}^{(1)} \left( {a_{01}^{(1)} \cos \phi \frac{x}{\sqrt \varepsilon }} \right.} \right. + a_{10}^{(1)} \left. {\sin \phi \frac{x}{\sqrt \varepsilon }} \right)\exp \left( { - \vartheta \frac{x}{\sqrt \varepsilon }} \right) \\ & \quad - \left. { A_{00}^{(1)} \left( {a_{01}^{(1)} \cos \phi \frac{\pi - x}{\sqrt \varepsilon }} \right. + a_{10}^{(1)} \left. {\sin \phi \frac{\pi - x}{\sqrt \varepsilon }} \right)\exp \left( { - \vartheta \frac{\pi - x}{\sqrt \varepsilon }} \right)} \right] \\ & \quad + \varepsilon^{2} \left[ {A_{11}^{(2)} \sin mx\sin ny + A_{02}^{(2)} \cos 2ny} \right. \\ & \quad - A_{02}^{(2)} (\cos 2ny)\left( {a_{01}^{(1)} \cos \phi \frac{x}{\sqrt \varepsilon } + } \right.a_{10}^{(1)} \left. {\sin \phi \frac{x}{\sqrt \varepsilon }} \right)\exp \left( { - \vartheta \frac{x}{\sqrt \varepsilon }} \right) \\ & \quad - A_{02}^{(2)} (\cos 2ny)\left( {a_{01}^{(1)} \cos \phi \frac{\pi - x}{\sqrt \varepsilon } + } \right.a_{10}^{(1)} \left. {\sin \phi \frac{\pi - x}{\sqrt \varepsilon }} \right)\left. {\exp \left( { - \vartheta \frac{\pi - x}{\sqrt \varepsilon }} \right)} \right] \\ & \quad + \varepsilon^{3} \left[ {A_{11}^{(3)} \sin mx\sin ny + A_{02}^{(3)} \cos 2ny\left. {} \right]} \right. + \varepsilon^{4} \left[ {A_{00}^{(4)} + A_{11}^{(4)} \sin mx\sin ny} \right. \\ & \quad + A_{20}^{(4)} \cos 2mx + A_{02}^{(4)} \cos 2ny + A_{13}^{(4)} \sin mx\sin 3ny + A_{04}^{(4)} \cos 4ny\left. {} \right] + O(\varepsilon^{5} ) \\ \end{aligned} $$
(34)
$$ \begin{aligned} \Psi_{x} & = \varepsilon^{3/2} \left[ {A_{00}^{(1)} c_{10}^{(3/2)} \sin \phi \frac{x}{\sqrt \varepsilon }} \right.\exp \left( { - \vartheta \frac{x}{\sqrt \varepsilon }} \right) + A_{00}^{(1)} c_{10}^{(3/2)} \sin \phi \frac{\pi - x}{\sqrt \varepsilon }\left. {\exp \left( { - \vartheta \frac{\pi - x}{\sqrt \varepsilon }} \right)} \right] \\ & \quad + \varepsilon^{2} [C_{11}^{(2)} \cos mx\sin ny] + \varepsilon^{5/2} \left[ {A_{02}^{(2)} (\cos 2ny)c_{10}^{(5/2)} \sin \phi \frac{x}{\sqrt \varepsilon }} \right.\exp \left( { - \vartheta \frac{x}{\sqrt \varepsilon }} \right) \\ & \quad + A_{02}^{(2)} (\cos 2ny)c_{10}^{(5/2)} \sin \phi \frac{\pi - x}{\sqrt \varepsilon }\left. {\exp \left( { - \vartheta \frac{\pi - x}{\sqrt \varepsilon }} \right)} \right] + \varepsilon^{3} [C_{11}^{(3)} \cos mx\sin ny] \\ & \quad + \varepsilon^{4} [C_{11}^{(4)} \cos mx\sin ny + C_{20}^{(4)} \sin 2mx + C_{13}^{(4)} \cos mx\sin 3ny] + O(\varepsilon^{5} ) \\ \end{aligned} $$
(35)
$$ \begin{aligned} \Psi_{y} & = \varepsilon^{2} [D_{11}^{(2)} \sin mx\cos ny] + \varepsilon^{3} [D_{11}^{(3)} \sin mx\cos ny + D_{02}^{(3)} \sin 2ny \\ & \quad - (A_{02}^{(2)} 2n\beta \sin 2ny)\left( {d_{01}^{(3)} \cos \phi \frac{x}{\sqrt \varepsilon } + d_{10}^{(3)} \sin \phi \frac{x}{\sqrt \varepsilon }} \right)\exp \left( { - \vartheta \frac{x}{\sqrt \varepsilon }} \right) \\ & \quad - (A_{02}^{(2)} 2n\beta \sin 2ny)\left( {d_{01}^{(3)} \cos \phi \frac{\pi - x}{\sqrt \varepsilon } + d_{10}^{(3)} \sin \phi \frac{\pi - x}{\sqrt \varepsilon }} \right)\left. {\exp \left( { - \vartheta \frac{\pi - x}{\sqrt \varepsilon }} \right)} \right] \\ & \quad + \varepsilon^{4} [D_{11}^{(4)} \sin mx\cos ny + D_{02}^{(4)} \sin 2ny + D_{13}^{(4)} \sin mx\cos 3ny] + O(\varepsilon^{5} ) \\ \end{aligned} $$
(36)
$$ \begin{aligned} F & = - B_{00}^{(0)} \frac{{y^{2} }}{2} + \varepsilon \left[ { - B_{00}^{(1)} \frac{{y^{2} }}{2}} \right] + \varepsilon^{2} \left[ { - B_{00}^{(2)} \frac{{y^{2} }}{2} + B_{11}^{(2)} \sin mx\sin ny} \right. \\ & \quad + A_{00}^{(1)} \left( {b_{01}^{(2)} \cos \phi \frac{x}{\sqrt \varepsilon } + b_{10}^{(2)} \sin \phi \frac{x}{\sqrt \varepsilon }} \right)\exp \left( { - \vartheta \frac{x}{\sqrt \varepsilon }} \right) \\ & \quad + A_{00}^{(1)} \left( {b_{01}^{(2)} \cos \phi \frac{\pi - x}{\sqrt \varepsilon } + b_{10}^{(2)} \sin \phi \frac{\pi - x}{\sqrt \varepsilon }} \right)\left. {\exp \left( { - \vartheta \frac{\pi - x}{\sqrt \varepsilon }} \right)} \right] \\ & \quad + \varepsilon^{3} \left[ { - B_{00}^{(3)} \frac{{y^{2} }}{2} + B_{02}^{(3)} \cos 2ny} \right. \\ & \quad + A_{02}^{(2)} (\cos 2ny)\left( {b_{01}^{(3)} \cos \phi \frac{x}{\sqrt \varepsilon } + b_{10}^{(3)} \sin \phi \frac{x}{\sqrt \varepsilon }} \right)\exp \left( { - \vartheta \frac{x}{\sqrt \varepsilon }} \right) \\ & \quad + A_{02}^{(2)} (\cos 2ny)\left( {b_{01}^{(3)} \cos \phi \frac{\pi - x}{\sqrt \varepsilon } + b_{10}^{(3)} \sin \phi \frac{\pi - x}{\sqrt \varepsilon }} \right)\left. {\exp \left( { - \vartheta \frac{\pi - x}{\sqrt \varepsilon }} \right)} \right] \\ & \quad + \varepsilon^{4} \left[ { - B_{00}^{(4)} \frac{{y^{2} }}{2} + B_{20}^{(4)} \cos 2mx + B_{02}^{(4)} \cos 2ny + B_{13}^{(4)} \sin mx\sin 3ny} \right] + O(\varepsilon^{5} ) \\ \end{aligned} $$
(37)

In the above equations, all coefficients are related and can be expressed in terms of A (2)11 , whereas ϑ and φ are given in detail in “Appendix 3”.

Appendix 3

In Eqs. (29) and (30)

$$ \begin{aligned} \Theta_{3} & = \frac{1}{{C_{3} }}\left[ {\gamma_{14} \gamma_{24} \frac{{m^{4} (1 + \mu )}}{{16n^{2} \beta^{2} g_{09} g_{06} }}\varepsilon^{ - 1} - \gamma_{24} \gamma_{14} \frac{{m^{2} g_{11} }}{{32n^{2} \beta^{2} g_{09} }}} \right. \\ & \quad + \frac{1}{8}\frac{{\gamma_{5} }}{{g_{8} }}\left[ {m^{2} (1 + 2\mu )\varepsilon - 2g_{05} \varepsilon^{2} + \frac{{g_{05}^{2} }}{{m^{2} }}\varepsilon^{3} } \right] + \left. {\frac{{\gamma_{24}^{2} - \gamma_{5}^{2} }}{{\gamma_{24} }}\frac{{\gamma_{T2} }}{{g_{T} }}\lambda_{T}^{(2)} } \right], \\ \Theta_{4} & = \frac{{\gamma_{24}^{2} - \gamma_{5}^{2} }}{{\gamma_{24} }}\frac{{\gamma_{T2} }}{{g_{T} }}\lambda_{T}^{(0)} , \\ \end{aligned} $$
(38)
$$ \begin{aligned} \lambda_{x}^{(0)} & = \frac{1}{2}\left\{ {\frac{{\gamma_{24} m^{2} }}{{(1 + \mu )g_{06} }}\varepsilon^{ - 1} + \gamma_{24} \frac{{g_{05} + (1 + \mu )g_{07} }}{{(1 + \mu )^{2} g_{06} }}} \right. \\ & \quad + \frac{1}{{\gamma_{14} (1 + \mu )m^{2} }}\left[ {g_{08} + \gamma_{14} \gamma_{24} \frac{{g_{05} }}{{g_{06} }}\frac{{(1 + \mu )g_{07} - \mu (2 + \mu )g_{05} }}{{(1 + \mu )^{2} }}} \right]\varepsilon \\ & \quad \left. { - \frac{\mu }{{(1 + \mu )^{2} }}\frac{{g_{05} }}{{\gamma_{14} m^{4} }}\left[ {1 + \frac{{g_{05} }}{{(1 + \mu )m^{2} }}\varepsilon } \right]\,\left[ {g_{08} + \gamma_{14} \gamma_{24} \frac{{g_{05} }}{{g_{06} }}\frac{{g_{05} + (1 + \mu )g_{07} }}{{(1 + \mu )^{2} }}(2 + \mu )} \right]\varepsilon^{2} } \right\}, \\ \lambda_{x}^{(2)} & = \frac{1}{8}\left\{ {\gamma_{14} \gamma_{24}^{2} \frac{{m^{6} \left( {2 + \mu } \right)}}{{2g_{09} g_{06}^{2} }}\varepsilon^{ - 1} } \right. \\ & \quad + \gamma_{14} \gamma_{24}^{2} \frac{{m^{4} }}{{2g_{09}^{{}} g_{06} }}\left[ {\frac{{g_{05} }}{{g_{06} }} + \frac{{g_{07} }}{{g_{06} }}(1 + \mu ) + g_{12} (1 + \mu ) - \frac{1}{(1 + \mu )}g_{11} } \right] \\ & \quad - \frac{1}{4}\gamma_{24} m^{2} g_{13} (1 + 2\mu )\varepsilon + \gamma_{14} \gamma_{24}^{2} \frac{{m^{2} g_{11} }}{{2g_{09} }}\left[ {\frac{{g_{05} }}{{g_{06} }}\frac{1}{1 + \mu } - \frac{{g_{07} }}{{g_{06} }} - g_{12} } \right]\varepsilon \\ & \quad + \gamma_{14} \gamma_{24}^{2} \frac{{m^{2} g_{05} }}{{2g_{09} g_{06} }}\left[ {\frac{{2(1 + \mu )^{2} - (1 + 2\mu )}}{{2(1 + \mu )^{2} }}g_{14} + \frac{\mu }{1 + \mu }\frac{{g_{05} }}{{g_{06} }}} \right](2 + \mu )\varepsilon \\ & \quad \left. { + \gamma_{24} \frac{{m^{2} n^{4} \beta^{4} }}{{g_{06} }}\frac{{(5 + 11\mu + 4\mu^{2} )g_{06} + 8m^{4} (1 + \mu )(2 + \mu )g_{10} }}{{(1 + \mu )g_{06} - 4m^{4} g_{10} }}\varepsilon } \right\}, \\ \lambda_{x}^{(4)} & = \frac{1}{128}\gamma_{14}^{2} \gamma_{24}^{3} \frac{{m^{10} (1 + \mu )}}{{g_{09}^{2} g_{06}^{3} }}\frac{{(6 + 6\mu + \mu^{2} )g_{136} + (1 + \mu )(6 - \mu^{2} )g_{06} }}{{g_{136} - (1 + \mu )g_{06} }}\varepsilon^{ - 1} , \\ \lambda_{T}^{(0)} & = 2\lambda_{x}^{(0)} , \\ \lambda_{T}^{(2)} & = 2\lambda_{x}^{(2)} - \frac{1}{8}\frac{{\gamma_{24} }}{{g_{8} }}\left\{ {m^{2} (1 + 2\mu )\varepsilon - 2g_{05} \varepsilon^{2} + \frac{{g_{05}^{2} }}{{m^{2} }}\varepsilon^{3} } \right\}, \\ \lambda_{T}^{(4)} & = 2\lambda_{x}^{(4)} + \frac{1}{64}\frac{{\gamma_{24} }}{{g_{8} }}\left\{ {\frac{{b_{11} }}{32\pi \vartheta }} \right.\gamma_{14}^{2} \gamma_{24}^{2} \frac{{m^{8} (1 + \mu )^{2} }}{{n^{4} \beta^{4} g_{09}^{2} g_{06}^{2} }}\varepsilon^{ - 3/2} \\ & \quad + m^{2} n^{4} \beta^{4} (1 + \mu )^{2} \varepsilon^{3} \left. {\left[ {\frac{{g_{06} (1 + 2\mu ) + 8m^{4} (1 + \mu )g_{10} }}{{g_{06} (1 + \mu ) - 4m^{4} g_{10} }}} \right]^{2} } \right\}, \\ \end{aligned} $$
(39)

in which gij and gijk are defined as in Shen [40] and

$$ \begin{aligned} & b = \left[ {\frac{{\gamma_{14} \gamma_{24} \gamma_{320}^{2} }}{{g_{16} }}} \right]^{1/2} ,\quad c = \gamma_{14} \gamma_{24} \gamma_{320} \frac{{g_{15} }}{{2g_{16} }},\quad \vartheta = \left[ {\frac{b - c}{2}} \right]^{1/2} \quad \phi = \left[ {\frac{b + c}{2}} \right]^{1/2} , \\ & a_{01}^{(1)} = 1,\quad a_{10}^{(1)} = \frac{\vartheta }{\phi },\quad b_{01}^{(2)} = \gamma_{24} g_{19} ,\quad b_{10}^{(2)} = \gamma_{24} \frac{\vartheta }{\phi }g_{20} , \\ & b_{11} = \frac{1}{b}[(a_{10}^{(1)} )^{2} \phi^{2} b + a_{10}^{(1)} 2\vartheta \phi c + (2\vartheta^{4} - \vartheta^{2} \phi^{2} + \phi^{4} )], \\ & C_{3} = 1 - \frac{{g_{05} }}{{m^{2} }}\varepsilon ,\quad C_{11} = \frac{{g_{8} }}{{g_{T} }},\quad g_{8} = \gamma_{24}^{2} - \frac{2}{\pi }\frac{{\gamma_{5}^{2} }}{{\gamma_{24} }}(\vartheta b_{01}^{(2)} - \phi b_{10}^{(2)} )\varepsilon^{1/2} , \\ & g_{T} = (\gamma_{24}^{2} \gamma_{T1} - \gamma_{5} \gamma_{T2} ) + \frac{2}{\pi }\frac{{\gamma_{5} }}{{\gamma_{24} }}(\vartheta b_{01}^{(2)} - \phi b_{10}^{(2)} )(\gamma_{T2} - \gamma_{5} \gamma_{T1} )\varepsilon^{1/2} , \\ \end{aligned} $$
(40)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, HS., Xiang, Y. Thermal buckling and postbuckling behavior of FG-GRC laminated cylindrical shells with temperature-dependent material properties. Meccanica 54, 283–297 (2019). https://doi.org/10.1007/s11012-019-00945-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-019-00945-0

Keywords

Navigation