Skip to main content

Experimental study to obtain the viscosity of CuO-loaded nanofluid: effects of nanoparticles’ mass fraction, temperature and basefluid’s types to develop a correlation

Abstract

In this study, the impacts of temperature, nanoparticles mass fraction, and basefluid types were investigated on the dynamic viscosity of CuO-loaded nanofluids. The nanoparticles were dispersed in deionized water, ethanol, and ethylene glycol as basefluids separately and the measurements were performed on samples with nanoparticles loads ranging from 0.005 to 5 wt%, and the temperature range of 25 to 70 °C. TEM analysis were performed on dried nanoparticles and the results showed the average mean diameter of CuO nanoparticles ranged from 10 to 50 nm. The results of DLS analysis confirmed the results of nanoparticles size obtained by TEM analysis in mentioned basefluids and Zeta-Potential tests exhibited the high stability of the nanoparticles in the basefluids environment. The results indicate that by adding tiny amount of CuO nanoparticles to basefluids, relative viscosity of nanofluid increases. By the increase in nanoparticles load higher than 0.1 wt% the effect of both nanoparticles mass fraction and temperature would be more tangible, while for nanoparticles mass fraction lower than 0.1 wt% no significant change in viscosity was observed. In addition, the results declare that viscosity of nanofluid remains constant at various applied shear rates indicating Newtonian behavior of nanofluid at various nanoparticles load and temperature. According to experimental data, it is also evident that with the increase in temperature, the value of relative dynamic viscosity decreases significantly. Also it is concluded that for CuO/ethanol nanofluid, more interfacial interaction is resulted that causes higher relative dynamic viscosity while for CuO/water lower interfacial interaction between nanoparticles surface and water molecules are resulted which leads to the lower values for this parameter. The results of this study implied that with increase the temperature from 25 to 70 °C at the condition where nanoparticles mass fraction was chosen to be 5 wt%, the value of dynamic viscosity of CuO/ethanol, CuO/deionized water, CuO/ethylene glycol declined 69%, 66%, and 65% respectively. Finally, a correlation was proposed for the relative dynamic viscosity of nanofluid based on the CuO nanoparticles mass fraction and temperature of the basefluid and nanoparticles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    Abdollahi A, Salimpour MR (2016) Experimental investigation on the boiling heat transfer of nanofluids on a flat plate in the presence of a magnetic field. Eur Phys J Plus 131(11):414

    Article  Google Scholar 

  2. 2.

    Dehghani Y, Abdollahi A, Karimipour A (2018) Experimental investigation toward obtaining a new correlation for viscosity of WO3 and Al2O3 nanoparticles-loaded nanofluid within aqueous and non-aqueous. J Therm Anal Calorim. https://doi.org/10.1007/s10973-018-7394-5

    Article  Google Scholar 

  3. 3.

    Dehkordi BAF, Abdollahi A (2018) Experimental investigation toward obtaining the effect of interfacial solid-liquid interaction and basefluid type on the thermal conductivity of CuO-loaded nanofluids. Int Commun Heat Mass Transf 97:151–162

    Article  Google Scholar 

  4. 4.

    Karimipour A, Ghasemi S, Darvanjooghi MHK, Abdollahi A (2018) A new correlation for estimating the thermal conductivity and dynamic viscosity of CuO/liquid paraffin nanofluid using neural network method. Int Commun Heat Mass Transf 92:90–99

    Article  Google Scholar 

  5. 5.

    Salimpour MR, Abdollahi A, Afrand M (2017) An experimental study on deposited surfaces due to nanofluid pool boiling: comparison between rough and smooth surfaces. Exp Therm Fluid Sci 88:288–300

    Article  Google Scholar 

  6. 6.

    Abdollahi A, Salimpour MR, Etesami N (2017) Experimental analysis of magnetic field effect on the pool boiling heat transfer of a ferrofluid. Appl Therm Eng 111:1101–1110

    Article  Google Scholar 

  7. 7.

    Akbari OA, Toghraie D, Karimipour A, Safaei MR, Goodarzi M, Alipour H, Dahari M (2016) Investigation of rib’s height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a rib-microchannel. Appl Math Comput 290:135–153

    MathSciNet  Google Scholar 

  8. 8.

    Attari H, Derakhshanfard F, Darvanjooghi MHK (2017) Effect of temperature and mass fraction on viscosity of crude oil-based nanofluids containing oxide nanoparticles. Int Commun Heat Mass Transf 82:103–113

    Article  Google Scholar 

  9. 9.

    Darvanjooghi MHK, Esfahany MN (2016) Experimental investigation of the effect of nanoparticle size on thermal conductivity of in situ prepared silica–ethanol nanofluid. Int Commun Heat Mass Transf 77:148–154

    Article  Google Scholar 

  10. 10.

    Darvanjooghi MHK, Esfahany MN, Faraj SHE (2017) Investigation of the effects of nanoparticle size on CO2 absorption by silica–water nanofluid. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2017.12.020

    Article  Google Scholar 

  11. 11.

    Darvanjooghi MHK, Pahlevaninezhad M, Abdollahi A, Davoodi SM (2017) Investigation of the effect of magnetic field on mass transfer parameters of CO2 absorption using Fe3O4–water nanofluid. AIChE J 63(6):2176–2186

    Article  Google Scholar 

  12. 12.

    Karimipour A, Esfe MH, Safaei MR, Semiromi DT, Jafari S, Kazi S (2014) Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method. Phys A 402:150–168

    Article  Google Scholar 

  13. 13.

    Karimipour A, Nezhad AH, D’Orazio A, Esfe MH, Safaei MR, Shirani E (2015) Simulation of copper–water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method. Eur J Mech B/Fluids 49:89–99

    Article  MATH  Google Scholar 

  14. 14.

    Choi SU, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab, Lemont

    Google Scholar 

  15. 15.

    Eastman J (1999) Novel thermal properties of nanostructured materials. Argonne National Lab, Lemont

    Google Scholar 

  16. 16.

    Mishra PC, Mukherjee S, Nayak SK, Panda A (2014) A brief review on viscosity of nanofluids. Int Nano Lett 4(4):109–120

    Article  Google Scholar 

  17. 17.

    Chopkar M, Sudarshan S, Das P, Manna I (2008) Effect of particle size on thermal conductivity of nanofluid. Metall Mater Trans A 39(7):1535–1542

    Article  Google Scholar 

  18. 18.

    Esfe MH, Hajmohammad H, Toghraie D, Rostamian H, Mahian O, Wongwises S (2017) Multi-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systems. Energy 137:160–171

    Article  Google Scholar 

  19. 19.

    Ghasemi S, Karimipour A (2017) Experimental Investigation of the effects of temperature and mass fraction on the dynamic viscosity of CuO-paraffin nanofluid. Appl Therm Eng 128:189–197

    Article  Google Scholar 

  20. 20.

    Afrand M, Toghraie D, Ruhani B (2016) Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–Ag/EG hybrid nanofluid: an experimental study. Exp Therm Fluid Sci 77:38–44

    Article  Google Scholar 

  21. 21.

    Esfe MH, Afrand M, Rostamian SH, Toghraie D (2017) Examination of rheological behavior of MWCNTs/ZnO-SAE40 hybrid nano-lubricants under various temperatures and solid volume fractions. Exp Therm Fluid Sci 80:384–390

    Article  Google Scholar 

  22. 22.

    Gravndyan Q, Akbari OA, Toghraie D, Marzban A, Mashayekhi R, Karimi R, Pourfattah F (2017) The effect of aspect ratios of rib on the heat transfer and laminar water/TiO2 nanofluid flow in a two-dimensional rectangular microchannel. J Mol Liq 236:254–265

    Article  Google Scholar 

  23. 23.

    Sajadifar SA, Karimipour A, Toghraie D (2017) Fluid flow and heat transfer of non-Newtonian nanofluid in a microtube considering slip velocity and temperature jump boundary conditions. Eur J Mech B/Fluids 61:25–32

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Zadkhast M, Toghraie D, Karimipour A (2017) Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim 129(2):859–867

    Article  Google Scholar 

  25. 25.

    Esfe MH (2018) The investigation of effects of temperature and nanoparticles volume fraction on the viscosity of copper oxide-ethylene glycol nanofluids. Periodica Polytech, Chem Eng 62(1):43

    Google Scholar 

  26. 26.

    Aberoumand S, Jafarimoghaddam A (2017) Experimental study on synthesis, stability, thermal conductivity and viscosity of Cu–engine oil nanofluid. J Taiwan Inst Chem Eng 71:315–322

    Article  Google Scholar 

  27. 27.

    Shima P, Philip J, Raj B (2010) Synthesis of aqueous and nonaqueous iron oxide nanofluids and study of temperature dependence on thermal conductivity and viscosity. J Phys Chem C 114(44):18825–18833

    Article  Google Scholar 

  28. 28.

    Duangthongsuk W, Wongwises S (2009) Measurement of temperature-dependent thermal conductivity and viscosity of TiO2–water nanofluids. Exp Therm Fluid Sci 33(4):706–714

    Article  Google Scholar 

  29. 29.

    Murshed S, Leong K, Yang C (2008) Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci 47(5):560–568

    Article  Google Scholar 

  30. 30.

    Chandrasekar M, Suresh S, Bose AC (2010) Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp Therm Fluid Sci 34(2):210–216

    Article  Google Scholar 

  31. 31.

    Zadeh AD, Toghraie D (2018) Experimental investigation for developing a new model for the dynamic viscosity of silver/ethylene glycol nanofluid at different temperatures and solid volume fractions. J Therm Anal Calorim 131(2):1449–1461

    Article  Google Scholar 

  32. 32.

    Nwosu PN, Meyer J, Sharifpur M (2014) A review and parametric investigation into nanofluid viscosity models. J Nanotechnol Eng Med 5(3):031008

    Article  Google Scholar 

  33. 33.

    Hosseini SM, Moghadassi A, Henneke DE (2010) A new dimensionless group model for determining the viscosity of nanofluids. J Therm Anal Calorim 100(3):873–877

    Article  Google Scholar 

  34. 34.

    Chen H, Ding Y, He Y, Tan C (2007) Rheological behaviour of ethylene glycol based titania nanofluids. Chem Phys Lett 444(4–6):333–337

    ADS  Article  Google Scholar 

  35. 35.

    Nielsen LE (1970) Generalized equation for the elastic moduli of composite materials. J Appl Phys 41(11):4626–4627

    ADS  Article  Google Scholar 

  36. 36.

    Sahooli M, Sabbaghi S, Saboori R (2012) Synthesis and characterization of mono sized CuO nanoparticles. Mater Lett 81:169–172

    Article  Google Scholar 

  37. 37.

    Teng T-P, Hung Y-H, Teng T-C, Mo H-E, Hsu H-G (2010) The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng 30(14):2213–2218

    Article  Google Scholar 

  38. 38.

    Esmaeili Faraj SH, Nasr Esfahany M, Jafari-Asl M, Etesami N (2014) Hydrogen sulfide bubble absorption enhancement in water-based nanofluids. Ind Eng Chem Res 53(43):16851–16858

    Article  Google Scholar 

  39. 39.

    Esmaeili-Faraj SH, Nasr Esfahany M (2016) Absorption of hydrogen sulfide and carbon dioxide in water based nanofluids. Ind Eng Chem Res 55(16):4682–4690

    Article  Google Scholar 

  40. 40.

    Kim W-G, Kang HU, Jung K-M, Kim SH (2008) Synthesis of silica nanofluid and application to CO2 absorption. Sep Sci Technol 43(11–12):3036–3055

    Article  Google Scholar 

  41. 41.

    Koo J, Kleinstreuer C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6(6):577–588

    Article  Google Scholar 

  42. 42.

    Feng Y, Yu B, Xu P, Zou M (2007) The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles. J Phys D Appl Phys 40(10):3164

    ADS  Article  Google Scholar 

  43. 43.

    Özerinç S, Kakaç S, Yazıcıoğlu AG (2010) Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid Nanofluid 8(2):145–170

    Article  Google Scholar 

  44. 44.

    Xie H, Fujii M, Zhang X (2005) Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int J Heat Mass Transf 48(14):2926–2932

    Article  MATH  Google Scholar 

  45. 45.

    Yu W, Choi S (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5(1–2):167–171

    Article  Google Scholar 

  46. 46.

    Esfe MH, Razi P, Hajmohammad MH, Rostamian SH, Sarsam WS, Arani AAA, Dahari M (2017) Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids by NSGA-II using ANN. Int Commun Heat Mass Transf 82:154–160

    Article  Google Scholar 

  47. 47.

    Atashrouz S, Pazuki G, Alimoradi Y (2014) Estimation of the viscosity of nine nanofluids using a hybrid GMDH-type neural network system. Fluid Phase Equilib 372:43–48

    Article  Google Scholar 

  48. 48.

    Żyła G, Fal J (2017) Viscosity, thermal and electrical conductivity of silicon dioxide–ethylene glycol transparent nanofluids: an experimental studies. Thermochim Acta 650:106–113

    Article  Google Scholar 

  49. 49.

    Mariano A, Pastoriza-Gallego MJ, Lugo L, Mussari L, Piñeiro MM (2015) Co3O4 ethylene glycol-based nanofluids: thermal conductivity, viscosity and high pressure density. Int J Heat Mass Transf 85:54–60

    Article  Google Scholar 

  50. 50.

    Esfe MH, Saedodin S (2014) An experimental investigation and new correlation of viscosity of ZnO–EG nanofluid at various temperatures and different solid volume fractions. Exp Therm Fluid Sci 55:1–5

    Article  Google Scholar 

  51. 51.

    Akbari OA, Afrouzi HH, Marzban A, Toghraie D, Malekzade H, Arabpour A (2017) Investigation of volume fraction of nanoparticles effect and aspect ratio of the twisted tape in the tube. J Therm Anal Calorim 129(3):1911–1922

    Article  Google Scholar 

  52. 52.

    Esfe MH, Afrand M, Rostamian SH, Toghraie D (2017) Examination of rheological behavior of MWCNTs/ZnO-SAE40 hybrid nano-lubricants under various temperatures and solid volume fractions. Exp Therm Fluid Sci 80:384–390

    Article  Google Scholar 

  53. 53.

    Esfe MH, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S (2014) Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim 118(1):287–294

    Article  Google Scholar 

  54. 54.

    Toghraie D, Chaharsoghi VA, Afrand M (2016) Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J Therm Anal Calorim 125(1):527–535

    Article  Google Scholar 

  55. 55.

    Esfe MH, Yan WM, Afrand M, Sarraf M, Toghraie D, Dahari M (2016) Estimation of thermal conductivity of Al2O3/water (40%)–ethylene glycol (60%) by artificial neural network and correlation using experimental data. Int Commun Heat Mass Transf 74:125–128

    Article  Google Scholar 

  56. 56.

    Afrand M, Toghraie D, Karimipour A, Wongwises S (2017) A numerical study of natural convection in a vertical annulus filled with gallium in the presence of magnetic field. J Magn Magn Mater 430:22–28

    ADS  Article  Google Scholar 

  57. 57.

    Esfahani MA, Toghraie D (2017) Experimental investigation for developing a new model for the thermal conductivity of silica/water-ethylene glycol (40%–60%) nanofluid at different temperatures and solid volume fractions. J Mol Liq 232:105–112

    Article  Google Scholar 

  58. 58.

    Esfe MH, Rostamian H, Toghraie D, Yan WM (2016) Using artificial neural network to predict thermal conductivity of ethylene glycol with alumina nanoparticle. J Therm Anal Calorim 126(2):643–648

    Article  Google Scholar 

  59. 59.

    Akbari OA, Afrouzi HH, Marzban A, Toghraie D, Malekzade H, Arabpour A (2017) Investigation of volume fraction of nanoparticles effect and aspect ratio of the twisted tape in the tube. J Therm Anal Calorim 129(3):1911–1922

    Article  Google Scholar 

  60. 60.

    Mashayekhi R, Khodabandeh E, Bahiraei M, Bahrami L, Toghraie D, Akbari OA (2017) Application of a novel conical strip insert to improve the efficacy of water–Ag nanofluid for utilization in thermal systems: a two-phase simulation. Energy Convers Manag 151:573–586

    Article  Google Scholar 

  61. 61.

    Gravndyan Q, Akbari OA, Toghraie D, Marzban A, Mashayekhi R, Karimi R, Pourfattah F (2017) The effect of aspect ratios of rib on the heat transfer and laminar water/TiO2 nanofluid flow in a two-dimensional rectangular microchannel. J Mol Liq 236:254–265

    Article  Google Scholar 

  62. 62.

    Semironi DT, Azimian AR (2010) Molecular dynamics simulation of liquid–vapor phase equilibrium by using the modified Lennard-Jones potential function. Heat Mass Transf 46(3):287–294

    ADS  Article  Google Scholar 

  63. 63.

    Akbari OA, Toghraie D, Karimipour A (2016) Numerical simulation of heat transfer and turbulent flow of water nanofluids copper oxide in rectangular microchannel with semi-attached rib. Adv Mech Eng 8(4):1687814016641016

    Article  Google Scholar 

  64. 64.

    Esfe MH, Saedodin S, Wongwises S, Toghraie D (2015) An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim 119(3):1817–1824

    Article  Google Scholar 

  65. 65.

    Afshari A, Akbari M, Toghraie D, Yazdi ME (2018) Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT–alumina/water (80%)–ethylene-glycol (20%). J Therm Anal Calorim 132(2):1001–1015

    Article  Google Scholar 

  66. 66.

    Esfahani NN, Toghraie D, Afrand M (2018) A new correlation for predicting the thermal conductivity of ZnO–Ag (50%–50%)/water hybrid nanofluid: an experimental study. Powder Technol 323:367–373

    Article  Google Scholar 

  67. 67.

    Esfe MH, Hajmohammad H, Toghraie D, Rostamian H, Mahian O, Wongwises S (2017) Multi-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systems. Energy 137:160–171

    Article  Google Scholar 

  68. 68.

    Alrashed AA, Karimipour A, Bagherzadeh SA, Safaei MR, Afrand M (2018) Electro-and thermophysical properties of water-based nanofluids containing copper ferrite nanoparticles coated with silica: experimental data, modeling through enhanced ANN and curve fitting. Int J Heat Mass Transf 127:925–935

    Article  Google Scholar 

  69. 69.

    Karimipour A, Bagherzadeh SA, Goodarzi M, Alnaqi AA, Bahiraei M, Safaei MR, Shadloo MS (2018) Synthesized CuFe2O4/SiO2 nanocomposites added to water/EG: evaluation of the thermophysical properties beside sensitivity analysis & EANN. Int J Heat Mass Transf 127:1169–1179

    Article  Google Scholar 

  70. 70.

    Karimipour A, D’Orazio A, Goodarzi M (2018) Develop the lattice Boltzmann method to simulate the slip velocity and temperature domain of buoyancy forces of FMWCNT nano particles in water through a micro flow imposed to the specified heat flux. Phys. A 509:729–745

    Article  Google Scholar 

  71. 71.

    Safaei MR, Karimipour A, Abdollahi A, Nguyen TK (2018) The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method. Phys. A 509:515–535

    Article  Google Scholar 

  72. 72.

    Goodarzi M, D’Orazio A, Keshavarzi A, Mousavi S, Karimipour A (2018) Develop the nano scale method of lattice Boltzmann to predict the fluid flow and heat transfer of air in the inclined lid driven cavity with a large heat source inside, two case studies: pure natural convection & mixed convection. Phys. A 509:210–233

    Article  Google Scholar 

  73. 73.

    Esfe MH, Arani AAA, Karimipour A, Esforjani SSM (2014) Numerical simulation of natural convection around an obstacle placed in an enclosure filled with different types of nanofluids. Heat Transf. Res. 45(3):279–292

    Google Scholar 

  74. 74.

    Karimipour A, D’Orazio A, Shadloo MS (2017) The effects of different nano particles of Al2O3 and Ag on the MHD nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump. Phys. E 86:146–153

    Article  Google Scholar 

  75. 75.

    Esfandiary M, Mehmandoust B, Karimipour A, Pakravan HA (2016) Natural convection of Al2O3–water nanofluid in an inclined enclosure with the effects of slip velocity mechanisms: Brownian motion and thermophoresis phenomenon. Int J Therm Sci 105:137–158

    Article  Google Scholar 

  76. 76.

    Rahman MM, Eltayeb IA (2013) Radiative heat transfer in a hydromagnetic nanofluid past a non-linear stretching surface with convective boundary condition. Meccanica 48(3):601–615

    MathSciNet  Article  MATH  Google Scholar 

  77. 77.

    Rashidi MM, Freidoonimehr N, Hosseini A, Bég OA, Hung TK (2014) Homotopy simulation of nanofluid dynamics from a non-linearly stretching isothermal permeable sheet with transpiration. Meccanica 49(2):469–482

    Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Safaei.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdollahi, A., Karimi Darvanjooghi, M.H., Karimipour, A. et al. Experimental study to obtain the viscosity of CuO-loaded nanofluid: effects of nanoparticles’ mass fraction, temperature and basefluid’s types to develop a correlation. Meccanica 53, 3739–3757 (2018). https://doi.org/10.1007/s11012-018-0916-1

Download citation

Keywords

  • Nanofluid
  • Dynamic viscosity
  • Basefluid types
  • CuO nanoparticles
  • Correlation